Physics at Hadron Colliders

Lecture 3

Search for the Higgs boson

- Higgs boson production and decays
- LHC discovery potential
- What can be covered at the Tevatron?

The Search for the Higgs Boson

- "Revealing the physical mechanism that is responsible for the breaking of electroweak symmetry is one of the key problems in particle physics"
- "A new collider, such as the LHC must have the potential to detect this particle, should it exist."

1 1 (01, 02.)

Kreis der Minima

What do we know about the Higgs Boson today

- Needed in the Standard Model to generate particle masses
- Mass not predicted by theory, except that $m_H < \sim 1000 \text{ GeV}$
- m_H > 114.4 GeV from direct searches at LEP
- Indirect limits from electroweak precision measurements (LEP, Tevatron and other experiments....)

Results of the precision el.weak measurements: (all experiments, July 2007):

 $M_{H} = 80 (+36) (-26) GeV/c^{2}$ $M_{H} < 144 GeV/c^{2} (95 \% CL)$

→ Higgs boson could be around the corner !

How do the constraints look like in a supersymmetric theory ?

Properties of the Higgs Boson

• The decay properties of the Higgs boson are fixed, if the mass is known:

H
W⁺, Z, t, b, c,
$$\tau^+$$
,...., g, γ
W⁻, Z, t, b, c, τ^- ,..., g, γ

$$\Gamma(H \to f\bar{f}) = N_C \frac{G_F}{4\sqrt{2}\pi} m_f^2(M_H^2) M_H$$

$$\Gamma(H \to VV) = \delta_V \frac{G_F}{16\sqrt{2}\pi} M_H^3 (1 - 4x + 12x^2) \beta_V$$

where: $\delta_Z=1, \delta_W=2, \ x=M_V^2/M_V^2, \ eta=$ velocity

$$\Gamma(H \to gg) = \frac{G_F \ \alpha_s^2(M_H^2)}{36\sqrt{2}\pi^3} \ M_H^3 \ \left[1 + \left(\frac{95}{4} - \frac{7N_I}{6}\right) \frac{\alpha_s}{\pi} \right]$$

$$\Gamma(H \to \gamma\gamma) = \frac{G_F \ \alpha^2}{128\sqrt{2}\pi^3} \ M_H^3 \ \left[\frac{4}{3}N_C e_t^2 - 7 \right]^2$$

. . .

Higgs boson likes mass:

It couples to particles proportional to their mass

→ decays preferentially in the heaviest particles kinematically allowed

Properties of the Higgs Boson

Upper limit on Higgs boson mass: from unitarity of WW scattering $M_H < 1 \text{ TeV/c}^2$

Higgs Boson Production at Hadron Colliders

(i) Gluon fusion

(ii) Vector boson fusion

(iii) Associated production (W/Z, tt)

Higgs Boson Production cross sections

Higgs Boson Decays at Hadron Colliders

<u>at high mass:</u> Lepton final states are essential (via $H \rightarrow WW$, ZZ)

<u>at low mass:</u> Lepton and Photon final states (via $H \rightarrow WW^*$, ZZ*)

Tau final states

The dominant **bb decay mode** is only useable in the associated production mode (ttH) (due to the huge QCD jet background)

How can one claim a discovery ?

Suppose a new narrow particle $X \rightarrow \gamma \gamma$ is produced:

 $\sqrt{N_B}$ = error on number of background events, for large numbers otherwise: use Poisson statistics

S > 5 : signal is larger than 5 times error on background. Gaussian probability that background fluctuates up by more than 5σ : $10^{-7} \rightarrow$ discovery

K. Jakobs, Universität Freiburg

Two critical parameters to maximize S

1. <u>Detector resolution</u>:

If σ_m increases by e.g. a factor of two, then need to enlarge peak region by a factor of two to keep the same number of signal events

→ N_B increases by ~ 2 (assuming background flat)

$$\Rightarrow S = N_{S} / \sqrt{N_{B}} \text{ decreases by } \sqrt{2}$$
$$\Rightarrow S \sim 1 / \sqrt{\sigma_{m}}$$

"A detector with better resolution has larger probability to find a signal"

 $\begin{array}{ll} \underline{Note}: \mbox{ only valid if } \Gamma_{\rm H} << \sigma_{\rm m}. \mbox{ If Higgs is broad detector resolution is not relevant.} \\ m_{\rm H} = 100 \mbox{ GeV } \quad \rightarrow \quad \Gamma_{\rm H} \ \mbox{ ~0.001 GeV} \end{array}$

2. Integrated luminosity :

$H \rightarrow ZZ^{(*)} \rightarrow \ell \ell \ell \ell$

Background: Top production

 $tt \rightarrow Wb Wb \rightarrow l v c l v l v c l v$

 $P_{T}(1,2) > 20 \text{ GeV}$ $P_{T}(3,4) > 7 \text{ GeV}$ |η| < 2.5 **Isolated** leptons

250

 $M(II) \sim M_7$ $M(I'I') \sim < M_{z}$

Associated production Z bb

 $Z bb \rightarrow \mathcal{U} cl \gamma cl \gamma$

 σ BR \approx 1300 fb

Discovery potential in mass range from ~ 130 to ~ 600 GeV/c²

K. Jakobs, Universität Freiburg

A simulated $H \rightarrow ZZ \rightarrow \boldsymbol{\ell} \boldsymbol{\ell} \boldsymbol{\ell} \boldsymbol{\ell}$ event

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2007

→ most demanding channel for EM calorimeter performance : energy and angle resolution, acceptance, γ /jet and γ / π^0 separation

<u>A simulated H $\rightarrow \gamma\gamma$ event in ATLAS</u>

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2007

Updated Studies from ATLAS and CMS

New elements of the analysis:

- more contributions to the $\gamma\gamma$ background

- NLO calculations available (Binoth et al., DIPHOX, RESBOS)
- Realistic detector material
- More realistic K factors (for signal and background)

Signal significance for $m_H = 130 \text{ GeV/c}^2$ and 30 fb⁻¹

ATLAS	LO (TDR, 1999)	3.9 σ
	NLO (update, cut based)	6.3 σ
	NLO (likelihood methods)	8.7 σ
CMS	NLO (cut based, TDR-2006)	6.0 σ
	NLO (neural net optimization, TDR-2006)	8.2 σ

Comparable results for ATLAS and CMS

"If the Standard Model Higgs particle exists, it will be discovered at the LHC !"

The full allowed mass range

from the LEP limit (~114 GeV) up to theoretical upper bound of ~1000 GeV

can be covered using the two "safe" channels

 $\begin{array}{l} \mathsf{H} \to \mathsf{ZZ} \to \ell \ell \ \ell \ell \quad \text{and} \\ \mathsf{H} \to \gamma \gamma \end{array}$

 $\frac{\text{More difficult channels can also be used: } \underline{\text{Vector Boson Fusion}}}{\underline{qq} \ \underline{H} \rightarrow \underline{qq} \ \underline{WW} \rightarrow \underline{qq} \ \underline{\ell} \underline{v} \ \underline{\ell} \underline{v}}$

Motivation: Increase discovery potential at low mass Improve measurement of Higgs boson parameters (couplings to bosons, fermions)

Distinctive Signature of:

- two forward tag jets
- little jet activity in the central region
 ⇒ central jet Veto

Forward jet tagging

Rapidity distribution of tag jets VBF Higgs events vs. tt-background

Rapidity separation

CERN Summer Student Lectures, Aug. 2007

Transverse mass distributions: clear excess of events above the background from tt-production

Presence of a signal can also be demonstrated in the $\Delta \phi$ distribution (i.e. azimuthal difference between the two leptons)

 $H \rightarrow \tau \tau$ decay modes visible for a SM Higgs boson in vector boson fusion

- large boost (high-P_T Higgs)
 - → collinear approximation: assume neutrinos go in the direction of the visible decay products
 - → Higgs mass can be reconstructed
- main background: Z jj, $Z \rightarrow \tau \tau$

LHC discovery potential for 30 fb⁻¹

- Full mass range can already be covered after a few years at low luminosity
 Several channels available over a large range of masses
- Vector boson fusion channels play an important role at low mass !

Combined ATLAS + CMS discovery potential

- Luminosity required for a 5 σ discovery or a 95% CL exclusion -

~ 5 fb⁻¹ needed to achieve a 5σ discovery (well understood and calibrated detector)

 < 1 fb⁻¹ needed to set a 95% CL limit (low mass ~ 115 GeV/c² more difficult)

comments:

- systematic uncertainties assumed to be luminosity dependent (no simple scaling, $\sigma \sim \sqrt{L}$, possible)

Is it a Higgs Boson ?

-can the LHC measure its parameters ?-

1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV/c²) ($\gamma\gamma$ and ZZ \rightarrow 4 ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

(\rightarrow see next slide)

3. Spin and CP

Angular distributions in the decay channel $H \rightarrow ZZ(^*) \rightarrow 4$ are sensitive to spin and CP eigenvalue

4. Higgs self coupling

Possible channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell_V jj \ell_V jj$ (like sign leptons) Small signal cross sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

⇒ no significant measurement possible at the LHC very difficult at a possible SLHC (6000 fb⁻¹) limited to mass region around 160 GeV/c²

Measurement of the Higgs boson mass

Dominated by ZZ \rightarrow 4ℓ and $\gamma\gamma$ resonances !

well identified, measured with a good resolution

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV / c^2)

Is it a Higgs Boson ?

-can the LHC measure its parameters ?-

1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV/c²) ($\gamma\gamma$ and ZZ \rightarrow 4 ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

(\rightarrow see next slide)

3. Spin and CP

Angular distributions in the decay channel $H \rightarrow ZZ(^*) \rightarrow 4$ are sensitive to spin and CP eigenvalue

4. Higgs self coupling

Possible channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell_V jj \ell_V jj$ (like sign leptons) Small signal cross sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

⇒ no significant measurement possible at the LHC very difficult at a possible SLHC (6000 fb⁻¹) limited to mass region around 160 GeV/c²

Measurement of Higgs Boson Couplings

Global likelihood-fit (at each possible Higgs boson mass) Input: measured rates, separated for the various production modes

Output: Higgs boson couplings, normalized to the WW-coupling

Relative couplings can be measured with a precision of ~20% (for 300 fb⁻¹)

Is it a Higgs Boson ?

-can the LHC measure its parameters ?-

1. Mass

Higgs boson mass can be measured with a precision of 0.1% over a large mass range (130 - ~450 GeV/c²) ($\gamma\gamma$ and ZZ \rightarrow 4 ℓ resonances, el.magn. calo. scale uncertainty assumed to be ± 0.1%)

2. Couplings to bosons and fermions

(\rightarrow see next slide)

3. Spin and CP

Angular distributions in the decay channel $H \rightarrow ZZ(^*) \rightarrow 4$ are sensitive to spin and CP eigenvalue

4. Higgs self coupling

Possible channel: $gg \rightarrow HH \rightarrow WW WW \rightarrow \ell_V jj \ell_V jj$ (like sign leptons) Small signal cross sections, large backgrounds from tt, WW, WZ, WWW, tttt, Wtt,...

⇒ no significant measurement possible at the LHC very difficult at a possible SLHC (6000 fb⁻¹) limited to mass region around 160 GeV/c²

The Higgs Sector

in the MSSM

(the Minimal Supersymmetric Standard Model)

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2007

Can LHC also discover Higgs bosons in a supersymmetric world ?

SUSY:5 Higgs particlesH, h, AH+, H-

determined by two SUSY model parameters: m_A , tan β

One of the Higgs bosons is light: $m_h < 135 \text{ GeV}$

The others will most likely be heavy !

LHC discovery potential for MSSM Higgs bosons

 $m_{SUSY} = 1 \text{ TeV}, m_{top} = 175 \text{ GeV/c}^2$

Two or more Higgs can be observed over most of the parameter space \rightarrow disentangle SM / MSSM

- Plane fully covered (no holes) at low L (30 fb⁻¹)
- Main channels : $h \rightarrow \gamma\gamma$, tth $h \rightarrow bb$, $A/H \rightarrow \mu\mu$, $\tau\tau$, $H^{\pm} \rightarrow \tau \nu$

LHC discovery potential for SUSY Higgs bosons

Parameter space is fully covered:

"Also in a SUSY world, Higgs bosons will be discovered at the LHC"

K. Jakobs, Universität Freiburg

 \rightarrow

Can the Higgs boson already

be discovered

at Fermilab

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2007

Impressions from Fermilab

K. Jakobs, Universität Freiburg

Search channels at the Tevatron

• important production/decay modes: associated WH and ZH + gluon fusion with H \rightarrow WW \rightarrow $\ell \nu \ \ell \nu$

hopeless:	gluon fusion in H $\rightarrow \gamma\gamma$, 4 ℓ	(rate limited)
	$\sigma \text{ BR } (\text{H} \rightarrow \text{ZZ} \rightarrow 4 \ \ell) = 0.07 \text{ fb}$	(M _H =150 GeV)

Mass range 110 - 130 GeV:	LHC	Triggering:
∗ WH → Iv bb	(৺) weak	slightly easier at the Tevatron:
∗ ZH → I ⁺ I ⁻ bb	weak	- better P _T ^{miss} -resolution
∗ ZH → νν bb	Ø (trigger)	- track trigger at level-1
∗ ZH → bb bb	Ø (trigger)	(seems to work)
∗ ttH → Iv b jjb bb	~	

Mass range 150 - 180 GeV:	LHC
$* H \rightarrow WW^{(*)} \rightarrow Iv Iv$	✓
* WH \rightarrow WWW ^(*) \rightarrow Iv Iv Iv	~
* WH \rightarrow WWW ^(*) \rightarrow I ⁺ v I ⁺ v jj	¥

Background:	
electroweak production: ~10 x larger at the	ТНС
QCD production (e.g, tt):	
~ 100 x larger at the	LHC

WH Signals at the LHC and the Tevatron

 $M_{\rm H} = 120 \text{ GeV}, 30 \text{ fb}^{-1}$

most important: control of the background shapes, very difficult!

Results from the

present

Run II data

typically, data corresponding to $\sim 1 \text{ fb}^{-1}$ analyzed

K. Jakobs, Universität Freiburg

CERN Summer Student Lectures, Aug. 2007

Low mass range: WH $\rightarrow e/\mu \nu bb$

Data are consistent with background from Standard Model processes:

Background:

- Wbb, Wcc, Wjj
- WW, WZ, ZZ, $Z \rightarrow \tau \tau$
- tt, t
- Jet production (from QCD processes)

Limits on the Higgs boson production cross section:

CDF: $\sigma(H) < 3.4 \text{ pb} (95 \% \text{ CL})$ DØ: $\sigma(H) < 1.3 \text{ pb} (95 \% \text{ CL})$ Standard Model value: $\sigma(H) \sim 0.13 \text{ pb}$

Combination of several search channels and both experiments

95% CL Limit / SM value

 $\begin{array}{ll} WH \rightarrow \ell \, \nu \ bb \\ ZH \ \rightarrow \ell \, \ell \ bb \\ ZH \ \rightarrow \nu \nu \ bb \end{array}$

 $\begin{array}{l} \mathsf{H} \to \mathsf{W} \mathsf{W} \to \ell_{\mathsf{V}} \ \ell_{\mathsf{V}} \\ \mathsf{W} \mathsf{H} \to \mathsf{W} \mathsf{W} \mathsf{W} \to \ell_{\mathsf{V}} \ \ell_{\mathsf{V}} + \dots \end{array}$

- The expected combined limits are still a factor of 7.5 (m_H =115 GeV/c²) and 4 (m_H =160 GeV/c²) away from the Standard Model expectation
- However, not all results included yet (CDF 1fb⁻¹ results at high mass and DØ 1fb⁻¹ result at low mass are missing)
- Many improvements have been made during the past year

Expectations for higher integrated luminosities

Combination of two experiments and all channels (no sensitivity in a single channel alone)

In order to achieve this, some additional improvements are still needed

(increased acceptance (forward leptons), improvements in b-tagging (forward b-tags, neural network), improved di-jet mass resolution.....)

Not demonstrated yet, but there is a chance....

In reserve: improved multivariate techniques (already used in Single Top analyses)

Summary on Higgs Boson Searches

- Electroweak precision data from LEP/SLC/Tevatron suggest a light Higgs boson
- Should a SM Higgs boson or MSSM Higgs bosons exist, they cannot escape detection at the LHC
- Tevatron might have a $3-\sigma$ discovery windows at low mass, however, much depends on the detector and accelerator performance.

Der Higgs Mechanismus, eine Analogie:

Higgs-Hintergrundfeld erfüllt den Raum

Ein Teilchen im Higgs-Feld... Prof. D. Miller UC London

... Widerstand gegen Bewegung ... Trägheit ↔ Masse

CERN Summer Student Lectures, Aug. 2007