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1 Relativistic kinematics (4 points)

Following the two postulates of the relativity, the coordinate transformation between two frames
lead to non intuitive effects (e.g. the time becomes frame-dependent, just as the position in space).
The next exercises try to recap the basic description of these effects and their pratical consequences.

Exercise No. 1 (2 points)

We consider two frames R and R′, with a relative velocity v(R′/R) ≡ v along the Oz direction. We
denote (x, y, z, t) (resp. (x′, y′, z′, t′)) the coordinates of a space-time point in R (resp. R′):

(i) Write down the Lorentz transformation linking the coodinates in the two frames, using β = v/c
and γ = 1/

√
1− β2. Check that the quantity ∆s2 = (c∆t)2 − (∆r)2 is invariant (frame-

independent).

(ii) Consider an excited nucleus (with a life time τlife) moving at a velocity v in the lab frame,
compute its decay time and the traveled distance before it decays, measured in the lab. By
considering an ideal clock made of light and mirrors moving at a velocity v, try to explain this
result. Numerical examples:

� At which velocity should we move to see an apple falling down from 1m in 1h ?

� What would be the traveled distance of a muon moving at 0.999 c, without any relativistic
effects (τlife = 2.2 µs) ? Compare with the relativistic theory prediction.

(iii) We describe a wave propagation by its frequency ω and its wave vector k. (ω, ck) form a 4-
vector with ω2 = (ck)2. Let’s assume we have light source, moving at a velocity v which emits
two plane waves having a angle +θ and −θ with the Oz axis. Compute the angle between
the 2 plane waves in the lab frame. Discuss the result. Assuming this phenomenon is general,
what practical consequences could you see?

Exercise No. 2 (2 points)

Kinematic of basic reactions:

(i) Express the energy-momentum 4-vector of particles with a moving mass m0 at a velocity v, in
terms of γ,m0 and v. Compute the norm of this 4-vector. What is the relation between energy,
momentum and mass? Study the limit for an ultra-relativistic particle (v/c ≈ 1). Interpret
the Taylor developement of the energy in the non-relativistic limit (v/c� 1).

(ii) By considering a symmetric collision between two electrons, compute the energy, the mo-
mentum and the velocity of each electron to be able to produce the Higgs boson (mH =
125 GeV/c2). Compute the electron energy for a fixed target collision (only one electron is
moving, the other one is contained in a target). Discuss the result.



(iii) Consider a particle A with a mass M at rest, decaying into two particles b and c of masses m1

and m2. Compute the energy and the momentum of the particle b and c. Study the behavior
of the decay kinematic as a function of m/M (for m ≡ m1 = m2).

2 Neutrino masses and oscillations (6 points)

The neutrinos, introduced to save the energy conservation in β-decay, were assumed to be massless in
agreement with the available observations. Since the end of the 90’s, flavour oscillations of neutrinos
have been experimentally confirmed and have led to attribute non-zero masses to neutrinos. These
exercises try to illustrate how neutrino masses can be probed experimentally.

Exercise No. 3 (3 points)

We consider two neutrinos states which can be written in two different bases:

(i) the interaction (or flavour) basis {|νe〉, |νµ〉}. All kind of interactions between neutrinos and
matter (production, detection) can only happen for the flavour eigenstates.

(ii) the Hamiltonian (or mass) basis {|ν1〉, |ν2〉}. Free evolution will be stationary only for the
Hamiltonian eigenstates.

Without loss of generality, we can write the transformation between the two basis using one param-
eter θ, called mixing angle :

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉 ; |νµ〉 = − sin θ |ν1〉 + cos θ |ν2〉 (1)

1. Recall the time evolution of Hamiltonian eigenstate |ψi〉 defined by Ĥψi = Eiψi. Considering
the free evolution of a neutrino having a momentum p and a mass mi, write the energy Ei as
a function of p, mi and c. Simplify this expression by considering the mass of a neutrino to
be small compared to its kinetic energy (but not negligible).

2. Compute the state vector of the system |ψ(t)〉 at anytime t, given the initial state |ψ(0)〉 = |νe〉.
Show that the probability Pνe→νe(t) to measure an electron neutrino at a time t is :

Pνe→νe(t) = 1− sin2(2θ) sin2
(
πct

L

)
; L =

4π~p
|∆m2|c2

, ∆m2 ≡ m2
2 −m2

1 (2)

Plot Pνe→νe(t) and explain when the oscillations are maximal and when they are minimal.

3. Do you know a way to experimentally produce electronic neutrinos on earth? Assuming we
are able to measure the neutrino flux with a precision of ±5%, what is the minimal distance
from which you could see these oscillations (θ = 45°, |∆m2|c4 = 10−4 eV2, pc = 4 MeV) ?
How does this distance change if the mixing angle is not maximal (i.e. θ 6= 45°) ?

Exercise No. 4 (3 points)

Neutrino oscillation experiments are only able to measure neutrino mass differences but cannot
provide any information on the absolute mass scale of these particles. One possible way of measuring
the absolute neutrino mass is to experimentally study the β-decay kinematic :

n → p+ e− + ν̄e (3)



1. Compute the electron energy (Ee) as a function of the proton mass (mp) and the invariant
mass of the {p, ν̄e} system (mpν̄e).

2. In which kinematic configuration Ee is minimal? What is the value of Emin
e ? In which kinematic

configuration Ee is maximal? What is the value of Emax
e ?

3. The Karlsruhe Tritium Neutrino Experiment (KATRIN) tries to measure the highest energetic
electrons coming from β-decays of tritium nuclei. Using the previous question, explain how
this measurement can provide information on the absolute neutrino mass scale. Interpret with
simple kinematic arguments. Based on the reaction (3), find out what would be the maximal
measured energy of the electron to probe a neutrino mass of 0.05 eV (we could, for example,
plot Emax

e versus mν)? Use mp c
2 = 938.272 MeV, mn c

2 = 939.565 MeV, me c
2 = 0.511 MeV.


