Exercises for Advanced Particle Physics - Winter term 2013/14 Exercise sheet No. III
 Prof. Karl Jakobs, Dr. Romain Madar, Claudia Giuliani
 The solutions have to be returned to mail box no. 1
 in the foyer of the Gustav-Mie-House before Monday, November 18th, 12:00h.

Spin-1/2 particle description : the Dirac equation (10 points)

The simple reasoning to obtain the Schrödinger equation from classical mechanics leads to some paradoxes when extrapolated to a relativistic regime. A better desciption of relativistic electrons is given by the Dirac equation and these exercises try to illustrate a few of its important properties.

Exercise No. 1 : Free solutions of the Dirac equation

For any linear equation, every motion can be decomposed as a linear combination of plane waves. The set of solution for any plane wave provide a complete basis of every possible motions for the Dirac equation

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 \tag{1}
\end{equation*}
$$

where x denotes a space-time point $(t, \vec{x}), \psi$ is a four-components object (made of two spinors ${ }^{1}$) and γ_{μ} are (4×4) matrices defined by (I denotes the unity (2×2) matrix, and σ_{i} are the Pauli matrix ${ }^{2}$):

$$
\gamma_{0}=\left(\begin{array}{cc}
I & 0 \tag{2}\\
0 & -I
\end{array}\right), \quad \gamma_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right), \quad i \equiv 1,2,3
$$

1. Compute the Dirac equation solution for an electron at rest. Interpret the four solutions.
2. Using the Lorentz transformation of a bi-spinor under a boost along the x_{1}-axis

$$
\begin{equation*}
\psi^{\prime}=S \psi, \quad S=\left(\sqrt{\frac{\gamma+1}{2}} I_{4 \times 4}+\sqrt{\frac{\gamma-1}{2}} \gamma_{0} \gamma_{1}\right) \psi, \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{3}
\end{equation*}
$$

compute the solution for an electron with momentum $\vec{p}=(p, 0,0)$. Is it consitent with the general solution presented in the lecture ?

Exercise No. 2 : Few invariants built on Dirac bi-spinors

Finding invariant quantities under simple transformations is crucial to build meaningful theories. If a phenomenon is invariant under rotation, a proper equation cannot include only r_{x} but must involve (r_{x}, r_{y}, r_{z}) in a well defined combination (respecting rotations). This exercise discusses two important invariants which can be constructed out of the four-component object ψ.

1. Show that the number $\psi^{\dagger} \psi$ is not invariant under a Lorentz transformation (use equation (3)). However, is the number $\bar{\psi} \psi$ invariant, where $\bar{\psi} \equiv \psi^{\dagger} \gamma_{0}$?
2. Show that the quantiy $j^{\mu} \equiv \bar{\psi} \gamma^{\mu} \psi$ is a 4 -vector.
[^0]
Exercise No. 3 : Non relativistic limit of the Dirac equation

(5 points)
Consider this form of the Dirac Equation:

$$
\left(\begin{array}{cc}
m & \vec{\sigma} \cdot \vec{p} \tag{4}\\
\vec{\sigma} \cdot \vec{p} & -m
\end{array}\right) \psi=i \partial_{t} \psi,
$$

and a non-relativistic electron travelling at speed $v \ll 1$ represented by $\psi=\binom{\psi_{1}}{\psi_{2}}$ where ψ_{1} and ψ_{2} are spinors.

1. If there is an electromagnetic field $A^{\mu}=\left(A^{0}, \vec{A}\right)$, the dynamic of an electron is described by the Dirac equation where $\vec{p} \rightarrow \vec{p}+e \vec{A}$ and $E \rightarrow E+e A^{0}$. By searching for stationnary solutions $\psi=e^{-i E t}\binom{\psi_{A}}{\psi_{B}}$, show that ψ_{A} fulfills

$$
\begin{equation*}
\left(\frac{1}{2 m}(\vec{\sigma} \cdot(\vec{p}+e \vec{A}))^{2}-e A^{0}\right) \psi_{A}=E_{\text {kin }} \psi_{A} \tag{5}
\end{equation*}
$$

where $E_{\text {kin }}$ is the kinetic energy of the electron. What can you say about ψ_{B} ? Discuss the result. Hints: why can you assume $\left|e A^{0}\right| \ll m$ and $E_{\text {kin }} \ll m$?
2. Using $\vec{B}=\vec{\nabla} \times \vec{A}$ and $\vec{E}=-\partial_{t} \vec{A}-\vec{\nabla} A^{0}$, show that ψ_{A} fulfills the Pauli equation:

$$
\begin{equation*}
\left(\frac{1}{2 m}(\vec{p}+e \vec{A})^{2}+\frac{e}{2 m} \vec{\sigma} \cdot \vec{B}-e A^{0}\right) \psi_{A}=E_{\text {kin }} \psi_{A}, \tag{6}
\end{equation*}
$$

and derive the gyromagnetic ratio g (or Lande g-factor) of the electron, definey by:

$$
\begin{equation*}
\vec{\mu} \equiv-g \frac{e}{2 m} \vec{S}, \quad \vec{S} \equiv \frac{1}{2} \vec{\sigma} \tag{7}
\end{equation*}
$$

Hint: You can make use of the following:

- $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=\vec{a} \cdot \vec{b}+i \vec{\sigma} \cdot(\vec{a} \times \vec{b})$, in the case where $[\vec{a}, \vec{\sigma}]=[\vec{b}, \vec{\sigma}]=0$
- $\vec{\nabla} \times(\vec{A} \psi)+\vec{A} \times(\vec{\nabla} \psi)=(\vec{\nabla} \times \vec{A}) \psi$.

3. What is the classical prediction of the gyromagnetic ratio g for an orbital angular momentum? Do you know few experiments where this Landé factor is essential to explain observations?
4. Bonus. Do you know experiments where the Landé factor measurement is inconsistent with the Dirac equation prediction? do you know if this is theoretically understood?

[^0]: ${ }^{1}$ A spinor is a two-component object which "behaves well" under the rotation, ie. respecting the properties of the rotation group. We talk about a group representation of dimension $2(1 \mathrm{D}=$ scalar, $3 \mathrm{D}=$ vector, etc ...)
 ${ }^{2}$ These matrices describes how a rotation will change a spinor. Their properties are unrelated to their (2×2) size, but rather to the rotation group itself. For example, 3×3 rotation matrices have the exact same properties.

