Exercises for Advanced Particle Physics - Winter term 2013/14
Exercise sheet No. III
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The solutions have to be returned to mail box no. 1
in the foyer of the Gustav-Mie-House before Monday, November 18th, 12:00h.

Spin-1/2 particle description : the Dirac equation (10 points)

The simple reasoning to obtain the Schrodinger equation from classical mechanics leads to some
paradoxes when extrapolated to a relativistic regime. A better desciption of relativistic electrons is
given by the Dirac equation and these exercises try to illustrate a few of its important properties.

Exercise No. 1 : Free solutions of the Dirac equation (3 points)

For any linear equation, every motion can be decomposed as a linear combination of plane waves.
The set of solution for any plane wave provide a complete basis of every possible motions for the
Dirac equation
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where z denotes a space-time point (¢, ), ¢ is a four-components object (made of two spinors!)
and vy, are (4 x 4) matrices defined by (I denotes the unity (2 x 2) matrix, and o; are the Pauli
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1. Compute the Dirac equation solution for an electron at rest. Interpret the four solutions.

matrix?):

2. Using the Lorentz transformation of a bi-spinor under a boost along the x;-axis
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compute the solution for an electron with momentum p' = (p,0,0). Is it consitent with the
general solution presented in the lecture 7

Exercise No. 2 : Few invariants built on Dirac bi-spinors (2 points)

Finding invariant quantities under simple transformations is crucial to build meaningful theories.
If a phenomenon is invariant under rotation, a proper equation cannot include only r, but must
involve (ry,7y,7,) in a well defined combination (respecting rotations). This exercise discusses two
important invariants which can be constructed out of the four-component object .

1. Show that the number W}ﬂ is not invariant under a Lorentz transformation (use equation (3)).
However, is the number 1) invariant, where ¢ = ¢t~y ?

2. Show that the quantiy j* = ¢y* is a 4-vector.

LA spinor is a two-component object which “behaves well” under the rotation, ie. respecting the properties of the
rotation group. We talk about a group representation of dimension 2 (1D=scalar, 3D=vector, etc ...)

2These matrices describes how a rotation will change a spinor. Their properties are unrelated to their (2 x 2) size,
but rather to the rotation group itself. For example, 3 x 3 rotation matrices have the exact same properties.



Exercise No. 3 : Non relativistic limit of the Dirac equation (5 points)
Consider this form of the Dirac Equation:
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and a non-relativistic electron travelling at speed v < 1 represented by ¢ = < il ) where 1 and
2

19 are spinors.

1. If there is an electromagnetic field A# = (A%, A), the dynamic of an electron is described by
the Dirac equation where 7 — p+eA and E — E+eA°. By searching for stationnary solutions
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where FEy, is the kinetic energy of the electron. What can you say about ¢p? Discuss the
result. Hints: why can you assume ]eAO\ < m and By, €< m ?

2. Using B=VxAand E = -8, A — 6140, show that 1 4 fulfills the Pauli equation:
<27n(p+614) +%0'B eA >¢A—Ek1n¢Aa (6)

and derive the gyromagnetic ratio g (or Landé g-factor) of the electron, definey by:
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Hint: You can make use of the following:

-

o (G-a@)(&-b)=a-b+id- (@ xb), in the case where [@,5] = [b,5] = 0
o V x (AY)+ A x (Vi) = (V x A).
3. What is the classical prediction of the gyromagnetic ratio g for an orbital angular momentum?
Do you know few experiments where this Landé factor is essential to explain observations?

4. Bonus. Do you know experiments where the Landé factor measurement is inconsistent with
the Dirac equation prediction? do you know if this is theoretically understood ?



