Exercises for Advanced Particle Physics - Winter term 2013/14 Exercise sheet No. IV

Prof. Karl Jakobs, Dr. Romain Madar, Claudia Giuliani

The solutions have to be returned to mail box no. 1
in the foyer of the Gustav-Mie-House before Monday, November 25th, 12:00h.

Elementary processes, transition amplitudes and cross sections

During the previous lectures, the propagation of free particles was described in a relativistic framework. To better understand particle physics, we want to learn about how particles interact. Experimentally, we analyse the final state of collisions produced with a known initial state. These exercises aim to illustrate how the properties of the final state can be predicted by a given theory.

Exercise No. 1: Generic form of the cross section
Based on Fermi's Golden Rule, the generic form of the cross section can be written, as seen in the lecture:

$$
\begin{equation*}
\mathrm{d} \sigma=\frac{1}{F}|\mathcal{M}|^{2} \mathrm{~d} Q \tag{1}
\end{equation*}
$$

1. Discuss the physical meaning of each term in this equation.
2. Optional question (2 points). For the reaction $a+b \rightarrow c+d$ with a total energy E_{cm}, show that the differential cross section in the centre-of-mass frame $\left(\vec{p}_{a}+\vec{p}_{b}=\overrightarrow{0}\right)$ can be written

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{|\mathcal{M}|^{2}}{64 \pi^{2} E_{\mathrm{cm}}^{2}} \frac{\left|\vec{p}_{c}\right|}{\left|\vec{p}_{a}\right|} \tag{2}
\end{equation*}
$$

Hint: Use the following relations:

$$
\begin{gather*}
F=4 \sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-m_{a}^{2} m_{b}^{2}} \tag{3}\\
\mathrm{~d} Q=\frac{\mathrm{d} \vec{p}_{c}}{(2 \pi)^{3} 2 E_{c}} \frac{\mathrm{~d} \vec{p}_{d}}{(2 \pi)^{3} 2 E_{d}}(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{c}-p_{d}\right) \tag{4}
\end{gather*}
$$

and the following transformation of the integration variable

$$
\begin{equation*}
p \rightarrow \sqrt{m_{c}^{2}+p^{2}}+\sqrt{m_{d}^{2}+p^{2}} \tag{5}
\end{equation*}
$$

Exercise No. 2: Creation of muon pairs in $e^{+} e^{-}$collisions in QED

The goal of this exercise is to calculate and interpret the unpolarized differential and total cross section of the following process predicted by quantum electrodyamics.

$$
\begin{equation*}
e^{+}\left(p_{1}\right) e^{-}\left(p_{2}\right) \rightarrow \mu^{+}\left(p_{3}\right) \mu^{-}\left(p_{4}\right) \tag{6}
\end{equation*}
$$

(p_{1}, p_{2}, p_{3} and p_{4} denote the four momenta of the particles).

1. Draw the Feynman diagram of the process. Following the structure "current \times propagator \times current", write the associated invariant amplitude $i \cdot \mathcal{M}$ (note $q \equiv p_{2}+p_{1}$).
2. Show that the squared amplitude is given by

$$
\begin{equation*}
|\mathcal{M}|^{2}=\frac{e^{4}}{q^{4}}\left[\bar{v}\left(p_{1}\right) \gamma^{\mu} u\left(p_{2}\right) \bar{u}\left(p_{2}\right) \gamma^{\nu} v\left(p_{1}\right)\right]\left[\bar{u}\left(p_{4}\right) \gamma_{\mu} v\left(p_{3}\right) \bar{v}\left(p_{3}\right) \gamma_{\nu} u\left(p_{4}\right)\right] \tag{7}
\end{equation*}
$$

3. We assume that the experimental setup is neither able to produce polarized beams nor able to measure the spin state of the out-coming particles. Explain why the expression of the matrix element involved in equation (1) is

$$
\begin{equation*}
\overline{|\mathcal{M}|^{2}} \equiv \frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2} \tag{8}
\end{equation*}
$$

4. Show that

$$
\begin{equation*}
\overline{|\mathcal{M}|^{2}}=\frac{e^{4}}{4 q^{4}} \operatorname{tr}\left[\left(\not p_{1}-m_{e}\right) \gamma^{\mu}\left(\not p_{2}+m_{e}\right) \gamma^{\nu}\right] \operatorname{tr}\left[\left(\not p_{4}+m_{\mu}\right) \gamma_{\mu}\left(\not p_{3}-m_{\mu}\right) \gamma_{\nu}\right] \tag{9}
\end{equation*}
$$

Hint: Write in spinor indices, and use the completeness relations $\sum_{s} u^{s}(p) \bar{u}^{s}(p)=\not p+m$ and $\sum_{s} v^{s}(p) \bar{v}^{s}(p)=\not p-m$.
5. Using the approximation $m_{e} \rightarrow 0$ and the theorems for traces involving γ matrices from the lecture, show that this expression can be simplified to

$$
\begin{equation*}
\overline{|\mathcal{M}|^{2}}=\frac{8 e^{4}}{q^{4}}\left[\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right)+\left(p_{2} \cdot p_{3}\right)\left(p_{1} \cdot p_{4}\right)+m_{\mu}^{2}\left(p_{1} \cdot p_{2}\right)\right] \tag{10}
\end{equation*}
$$

6. Considering that the $e^{+} e^{-}$collision are symmetric $\left(\vec{p}_{1}=-\vec{p}_{2}\right)$, show that $\overline{|\mathcal{M}|^{2}}$ can be simplified to

$$
\begin{equation*}
\overline{|\mathcal{M}|^{2}}=e^{4}\left[1+\frac{m_{\mu}^{2}}{E^{2}}+\left(1-\frac{m_{\mu}^{2}}{E^{2}}\right) \cos ^{2} \theta\right] \tag{11}
\end{equation*}
$$

where θ is the angle between p_{1} and p_{3}, E is the energy of any of the four fermions.
7. Using equation (2), show that the differential cross section and the total cross section are given by $\left(\alpha \equiv e^{2} /(4 \pi)\right)$

$$
\begin{gather*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{16 E^{2}} \sqrt{1-\frac{m_{\mu}^{2}}{E^{2}}}\left[1+\frac{m_{\mu}^{2}}{E^{2}}+\left(1-\frac{m_{\mu}^{2}}{E^{2}}\right) \cos ^{2} \theta\right] \tag{12}\\
\sigma_{\text {total }}=\frac{\pi \alpha^{2}}{3 E^{2}} \sqrt{1-\frac{m_{\mu}^{2}}{E^{2}}}\left(1+\frac{m_{\mu}^{2}}{2 E^{2}}\right) \tag{13}
\end{gather*}
$$

8. Discussion of the result.

- What minimum energy of the incoming fermions is required for this result to be valid?
- What would be $\sigma(E)$ if \mathcal{M} were constant? Compare with the behaviour of $\sigma(E)$ defined in equation (13) and deduce an experimental way to probe QED interactions.
- Express these cross sections in terms of the centre-of-mass energy \sqrt{s} using the highenergy approximation $E \gg m_{\mu}$. Interprete the result.

