A starting example

* A program that:

- Writes a prompt to enter your name
- Reads the name
- Writes out “Hello <name>"

e code/first example/
— Build it with c++ main. cpp
* What happens if:
- You don't give any name?
- You give more than one name?



Import standard input/output facilities| Import standard string facilities

\ /
#include <iostream:t///,,//””" ] —
#include <string> Entry point in the program

[
& main()?out represents the output

{

}

std:
std:
std:

/Std:

:cout << "Hell

<< is the output operator

:cout << "What's your name? ,\L
:string name;

:cin >> name;

A statement usually ends with a ;'

<< name << '\n';

cin represents the input
>> s the input operator

"\n' is the “newline” character

Define a variable of string type




e Standard facilities are imported with
an appropriate #include directive

- Typically they correspond to a file

* The entry point in a program is a
function called main

- One possible form of main does not take
any argument and returns an integer

e A variable must be declared before
being used

e cin and cout represent (standard)
input and output respectively



 Operators >> and << are used to read
from input and to write to output

* Multiple reads and multiple writes can
be chained one after the other

A statement usually ends with a semi-
colon (;)



Identifiers

e An identifier is a user-defined name that
denotes program entities (variable,
functions, classes, namespaces...)

 An identifier is composed of one or more
characters

- The first character must be a letter (letters
include the underscore ' ')

e C++ is case sensitive

- The other characters can be letters or
numbers

- The length is unlimited (system-specific)



Identifiers (2)

* C++ keywords and alternative tokens
cannot be used as identifiers

e Names that:

- start with an underscore and a capital
letter or

- contain two consecutive underscores
are reserved



C++ keywords

asm do if return typedef
auto double inline short typeid
bool dynamic cast int signed typename
break else long sizeof union
case enum mutable static unsigned
catch explicit namespace static cast using
char export new struct virtual
class extern operator switch void
const false private template volatile
const cast float protected this wchar t
continue for public throw while
default friend register true

delete goto reinterpret cast try

C++ alternative tokens

and and eq bitand bitor compl not
not eq or or eq Xor Xor eq




Another example

e code/second example/

* What does this program do?

e Try it
- Build it with c++ main. cpp

* What happens if there is no strings.txt?
- What happens if there is no test?

* Read from standard input rather than
from file

 Read strings rather than whole lines
* Read integers rather than strings



Import standard vector facilities

/

Import standard file I/O facilities
/

<fstream>
#include <algorithm> /
#include <iostream>

#include <vector> Import some standard algorithms
#include <string> |
#include C++-style comment

<
/ for sort

[
Open strings.txt for reading
I

Check if the file was correctly opened
int main() [
{ cerr represents the output for errors
std::ifstream input—file(* ings.txt");
if (linput fj
std::cerr << "Cannot open file strings.txt\n";
, return 1, «—[Exit from main (and from the program) with status 1
I
std::vector<std::string> v; < We keep ::he strings in a vector
sitdlsestrling 1LLae; _ — |Read a line at a time from the input file
while (getllne(lnpu%_flle, line)) { I

v.push back(line); =
}

Append it to the vector
I

sort(v.begin(), v.end()); <=

std::cout << v[i] << '\n';

}

Sort the vector (in place)

for (int 1 = 0; i < v.size(); ++1i) {

Print all the strings

b{lmpliciﬂy return O (valid only for main)




Some abstractions...

* Procedural abstraction, e.g. getline,
sort

 Data abstraction, e.qg. vector, string,
ifstream

* Type abstraction, e.g. getline, sort,
vector, iterators, string, ifstream

- Abstractions can be combined



e The C++ library offers a rich set of
predefined algorithms

e A C++-style comment starts at the
token // and goes until the end of the
line

 C-style comments are also supported

- The comment is enclosed between the
tokens /* and */, also on multiple lines

* A variable can be declared just when
it's needed

- This is recommended



* An expression can be automatically
converted to a boolean value
(true/talse), e.g. when testing for 1f,
while and for conditions

- The conversion can be built-in or user-
defined

* The operator ! (not) negates a boolean
value

* ++ is the increment operator

- The expression ++i increments i by 1



e vector is a standard container
- Others exist: list, map, set...

e [] is the subscript operator
- v[1] accesses the i element of v

e begin() and end() denote the first
and one beyond the last element of the
vector

- The denoted range is halt-open



Objects, variables, types

* An object is a region of storage
 An object is created by a definition

- Or by other means we'll see later

* The properties of an object (i.e. its
type) are determined when the object
i1s created

- A type defines the proper use of an object

e A variable is introduced by the
declaration of an object. The variable's
name denotes the object



Built-in types

A boolean type (bool)
- true, false

 Character types (char and wchar t;
signed, unsigned)

_ | I’ I5I’ I\nll I\tl
* Integer types (short, int, long;
signed, unsigned)

- 234, -7483, 0456 (octal), Oxdeaf (exa),
878U (force unsigned), 8475L (force long)

* The above are integral types



Built-in types
* Floating-point types (float, double,

long double)

-1.,1.0,-2.4637, .7e-2, .7F (force float), .7L
(force long double)

* Integral types and floating-point types
are arithmetic types

int i; // definition; its value may be undefined
int 1 = 0; // definition; initialized to zero

int 1(0); // definition; initialized to zero

int 1 = int(); // definition; initialized to zero

extern int i; // declaration only

double d; // definition; its value may be undefined
double d = 3.; // definition; initialized to 3.

char c = 'f'; // definition; initialized to 'f'

bool b = // definition; initialized to true




Built-in types

e void

- Special type to mean that no type
information is available

* e.g. No return value from a function

void v; // error
void f(): // ok, function declaration with no return value



User-defined types

e [t's possible to combine built-in types
to construct other, user-defined types

- Pointers

- Arrays

- References

- Data structures and classes

 User-defined types can themselves be
the basis for further aggregations



Expressions

* An expression is a sequence of
operators and operands that specifies
a computation

e An expression can result in a value and
cause side-effects

e Expression operands are variables and
literals

 Appropriate conversions (build-in and
user-defined) are executed to adjust
the type of the operands



* The order of evaluation of
subexpressions within an expression is
undefined

* The precedence of operators is the
“usual one”

- Arithmetic > logical > assignment
- If in doubt, use parenthesis



(Some) Operators

* Arithmetic * Subscript
++ --+ - * / % []

 Binary  Conditional expr
~ | & 7 >> << 2

* Logical  Function call
I && || ()

e Comparison  Scope resolution
== /= < > >= <=



Statements

e [.abel e [teration
e EXpression - while, do-while,
f
e Compound (block) o
* Jump

e Selection ,
- break, continue,

e Declaration
* Try block



Expression statement

|<expression> ;|

e Typically <expression>is an
assignment or a function call

y = X + 1;
f(X);

* The result of the expression is thrown
away

* <expression> can be missing (empty
statement



Compound statement

|{ <statement list> }|

e So that several statements can be used
where one is expected

- Function body, 1f block, while block...

* A compound statement defines a local
scope



1T (selection statement)

if (<condition>) <statement>

1f (<condition>) <statement> else <statement>

e [f the condition is true the first

statement is executed

e If the condition is false the second
statement, if present, is executed

e Condition must be convertible to bool

if (error) {
std::cerr << “An error occurred\n”;

}

if (x > y) {
max = X;

} else {
max = y;

}




switch (selection statement)

switch ( <condition> ) <statement>

 But typically <statement> is a
sequence of case statements and an
optional default statement

switch (n) {
case 1:
std::cout << “one\n”;
break; // without this it would continue through case 2
case 2:
std::cout << “two\n”;
break;
default:
std::cout << “unknown\n”

}




Switch and enum

e The switch statement and an enum
type work well together

enum rgb { red, green, blue };
rgb color;

Sl (eoler 4 The compiler warns

case red: if some cases are
std::cout << “red\n”;
- renk: left out

case green:
std::cout << “green\n”;
break;

case blue:
std::cout << “blue\n”
break;

}




Iteration statements
|while (<condition>) <statement>|

e <statement> is executed as far as
<condition> is true

- <statement> is executed zero or more
times

do <statement> while (<expression>)

e <statement> is executed as far as
<expression>is true

- <statement> is executed one or more times
- <expression> must be convertible to bool



for (iteration statement)

for (<initialization>; <condition>; <expression>) <statement>

* Roughly equivalent to
{

<initialization>;

while (<condition>) {
<statement>
<expression>;

}

}

* A for loop is preferred to a while loop
when there is a variable controlling the
loop



Jump statements

break;
e Exits from an ite—FIra 10n or from a
switch

|continue;|

* Terminates the current iteration of a loop

|return <expression>;|

e Returns from a function with a return
value equal to the result of <expression>

goto <label>;

 Jump the execution to <label>
* ARE YOU SURE YOU WANT TO USE IT?




Functions

* A function is the C++ mechanism to
support code abstraction

— Inherited from C

 The function internal workings are
hidden to its clients

* A function may take one or more input
parameters

* A function may return a value
* A function may have side-effects

- Changes to entities not explicitly
mentioned in its parameter list



#include <vector> n .
#include <string> unction name

#include <algorithm> Function declaration
#include <iostream> I

Function declaration (and definition)

std::vector<std::string> read( ’/
void write(std::vector<std: str1ng> V)

for tunsigned int i = 0; 1 <
eQut << v[i] << '\n';

size(); ++i) {

Formal parameter (type and name)
The type is mandatory

No return value

int main()

{ :
std::vector<std::string> v = read()®— Function call
sort(v.begin(), v.end());
write(vﬁ!--~,__§§§_

} Actual parameter

std::vector<std:

{

:string> read()*——Function declaration (and definition)

std::vector<std::string>

std::string line;

while (getline(std::cin, line)) {
result.push back(line);

Return value type

}
return result;$—|Return value




e As for variables, a function must be
declared before its use

e A function declaration is a definition if
it specifies also the function body

* The client calls a function passing
appropriate parameters in the right
order

- Formal parameters are initialized with the
actual parameters

* The client can ignore the return value

* Reading from cin and writing to cout
are examples of side effects



e Functions can be overloaded

- Same name, different number and/or type
of parameters

- The compiler will choose the best match
for a call

- The return type is not involved

std::vector<int> read();
std::vector<int> read(int max numbers);
std::list<int> read(); // error

* Function parameters can have deftault
values

std::vector<int> read(int max numbers = -1);
void write(std::vector<int> v = std::vector<int>());




Pass by value
vs Pass by reference

 The body of the function write()
works on a copy of its parameter, i.e. a
copy of the vector of strings is made
before calling write()

- No changes visible to the client

e If changes need to be visible to the
client or the parameter is not copyable
or the parameter is “big”, another
mechanism is available (passing a
“reference” to the original)



References

A reference declaration introduces an
alternative name for an already
declared object

e Must be initialized

 Cannot be changed after initialization

- always bound to the initial object

int 1;
int& ri; //
int& ri = 1; //
int j;
ri = 3j; //

int& rc = 1; //
int const& rc =

error
ok

assigns j to 1!
error, otherwise we could modify a constant
1; // ok, a temporary int is created



How to pass parameters to
functions

* Rule of thumb (there are exceptions)

e [f changes need not be visible to the
caller:

- Pass built-in types by value
- Pass non-built in types by const reference

e If changes need to be visible to the
caller

- Pass always by reference



How to structure source code

 Usually it is convenient to split source
code in more than one file, possibly in
more than one directory

- C++ supports separate compilation of
semi-independent modules

 Usually it is convenient to factor out
some functionality into a reusable
“library”

 Usually it is convenient to “export” the
intertace of the abstraction without
showing the actual implementation



Header and source files

* Given a certain functionality:

- Its interface goes into a “header file”
- Its implementation goes into a “source
file”
e Clients of that functionality will include
the header file

* To ensure consistency, the source file
includes the header file as well



Data abstraction

* Hide internal representation of an
object and allow its manipulation only
via its public interface

e Let's implement an abstraction for a
complex number

e Start from how we want to use that
abstraction

- Creation of numbers
- Manipulation

- Assignments

- Operations



Class

class Complex

{

public:
// public member declarations
// other public stuff

private:
// private member declarations
// other private stuff

s

By default class members are private

* The class keyword can be replaced by
struct

- By default class members are public



Complex c1; // (0.0,0.0)
Complex c2(1.0); // (1.0,0.0)
Complex c3(1.0, 2.0); // (1.0,2.0) .
Complex c4(c3); // (1.0,2.0) Creation
Complex c5 = c3; 1.0,2.0)
cl = c2;
cl = 1.0;
Operations
cl += c2;
cl =c2 / c3 + c4;
And also... write(cl);
cl = read();
cl = sqrt(cl) * (c2 + c3);




Class constructor

* A constructor is a special member
function that has the same name as the
class

- No return value

e It is invoked at object creation time to
initialize the storage allocated to the
object

e It can be overloaded
- And often it is



Special forms of ctors

e Default

- No parameters

- Automatically generated if no other ctor is
available

Complex cl;
® Copy CtOl" Complex cl1 = Complex();

- Takes a const reference to another
instance of the same class

- Used to initialize an object as a copy of an

eXisting one Complex cl1;

Complex c2(cl);

Complex c2 cl;
Complex c2 = Complex();

- Automatically generated
if not defined




Destructor

A destructor is is a special member
function that has the same name as the
class prefixed with the character ~

- No return value
- No parameters

e It is invoked when the object is about
to disappear to release possible
resources owned by the object

- Dynamic memory, files, locks, sockets...
* Automatically generated if not defined



Assignment operator

* Another special member function is the
assignment operator (operator=())

- Takes a const reference to another
instance of the same class

- It should return a reference to itself to
allow chaining of assignments

 Used to assign an object to another
one (already existing)

Complex cl; Complex c2;
cl = c2;

 Automatically generated if not defined




User-defined conversion

* One-parameter ctors can be used for

user-defined conversions

void f(Complex c);
class Complex {

Complex(double);
¥
Complex c(1.); // calls Complex(double);
Complex c = 1.; // equivalent to Complex c = Complex(1l.);
f(1.); // equivalent to f(Complex(1l.));

e An eXpllCIt void f(Complex c);
ctor disables | c'ass Somplex i

) N explicit Complex(double);
this possibility |

Complex c(1.); // calls Complex(double);
Complex ¢ = 1.; // error
f(1.); // error




Binary operators

 Binary operators such as+ - * /
should be implemented as free functions
to allow conversion for both operands

class Complex {
Complex operator+(Complex const& rhs);
};
Complex cl, c2;
cl + c2; // ok, calls cl.operator+(c2);
cl + 1.; // ok, calls cl.operator+(Complex(1.));
1. + c2; // error, no conversion on the first operand

class Complex { /* ... */ };
Complex operator+(Complex const& lhs, Complex const& rhs);
Complex cl, c2;

cl + c2; // ok, calls operator+(cl, c2);

cl + 1.; // ok, calls operator+(cl, Complex(1l.));
1. + c2; // ok, calls operator+(Complex(1l.), c2);




* Binary operators suchas+ - * /
produce new objects

- To be returned by value

* Binary operators suchas+ - * /

should be implemented in terms of +=
-= *= /=

- Code reuse
e operator++



Include guard

e If the header file is not adequately
protected multiple definitions can
happen (violation of ODR)

#include “complex.hpp”
#include “complex.hpp” // causes compilation error
// class Complex is defined twice

e All header files should be written as
follows:

#ifndef COMPLEX_HPP
#define COMPLEX_HPP

// previous stuff here
#endif




Namespaces

e Namespaces are a mechanism to

partition the space of names in a C++
program

- The same name can be chosen in different
places (possibly by different people,
parties, vendors)

// complex.hpp

namespace math {

class Complex { /* usual stuff here */ };

Complex operator+(Complex const&, Complex const&);

Il oo

}




* Argument Dependent Lookup

- aka Koenig lookup

- Unqualified functions/operators are
looked for also in the argument's
namespace(s)

math::Complex cl;
math::Complex c2;
cl + c2; // calls math::operator+(cl, c2)

* Using directive ‘ gz;ggezazf_ﬂ =C°mp1ex:\

- “Imports” specitied symbol

: . : -
o USlﬂg declaration ‘gi:ﬂg?ezar(r:l?space mat \

- “imports” all the symbols in the specified
namespace




Namespaces can be nested

namespace math {
namespace advanced {
class Complex { /* usual stuff here */ };
Complex operator+(Complex const&, Complex const&);

// ..
¥
¥

namespace ma = math::advanced; // namespace alias

ma: : Complex

Anonymous namespace

- Guarantees the uniqueness of the
namespace name in the TU where that

COde ends u namespace <some unique name> {
namespace { void fQO:
void f(Q); —- | 1
} using namespace <some unique name>
LOF fO;




Dynamic memory

e Sometimes it is useful to create objects
that could survive the current scope

* Such objects are created with the new
operator

* Such objects need to be explicitly
destroyed with the delete operator

class X { /* ... */ };
X* make_X(O { return new X; }
void (O

{
X* pointer_to_x = make_X(Q);

// use pointer_to_x here
delete pointer_to_x;

}




* The return value of the new expression
applied to type T is a pointer to T and
is denoted by T*

* The use of pointers is very error-prone

X* p = new X;
p = new X; // ops, how can I delete now the first X?

X* p = new X; X* p = new X;
// forgot to delete; memory leak|| delete p;
delete p; // ops; double delete

X# p=0’
delete p; // ok, this 1is valid and does nothing




How to use pointers

Oxbffffae4 0x8049c18 ~ X object 0x8049¢18
P 1 (on the heap)
Oxbffffae3 Oxbffffadc X object Oxbffffadc
p2 (on the stack)
X
class X {};
int mainO e operatoré&()
b (address-of)
X* pl = new X;
X x: takes the
N e = 8 address of an
delete pl; .
} object




class X { 1int 1; };
X* p = new X;

X X = *p;

X.1]

p->1;

(*p).1;

X& x2 = *p;

X const& x3 = *p;

. (dot) is the member access operator
- Cannot be overloaded for user-defined
types
e * and -> are the pointer dereference
operators
- (*p) .1 1s equivalent to p->1

- Can be overloaded (and they are!) for
user-defined types



