
Hadron Collider Physics

- Einordnung der Vorlesung
- Ablauf der Vorlesung
- Übungen
- Leistungsnachweis

Einordnung der Vorlesung "Hadron Collider Physics"

Master-Studiengang:

•Experimentelle Vorlesung aus dem Bereich "Teilchen und Felder"

- Im Vordergrund steht die Diskussion aktueller Forschung am LHC
 - Test des Standardmodells (Quantenchromodynamik, El.schwache Theorie)
 - Physik des Higgs-Bosons
 - Suche nach Supersymmetrie
 - Suche nach sonstigen Erweiterungen des Standardmodells

Vorlesungsplan (Termine, Inhalte)

Vorlesung "Physik an Hadron-Collidern" SS 2013

15. Apr	Einführung, LHC-Beschleuniger	2	KJ
16. Apr	3 ,		-1
22. Apr	Detektoren, Detektoren am LHC	2	KJ
23. Apr	Teilchensignaturen in den LHC-Detektoren	2	1 KJ
29. Apr	Strukturfunktionen, Wirkungsquerschnitte	2	КЈ
30. Apr			-1
06. Mai	Phänomenologie von pp Kollisionen	2	IV
07. Mai	Inelastische pp-Kollisionen	2	1 IV
13. Mai	Jets, direct photons, test of QCD	2	IV
14. Mai	Jets, direct photons, test of QCD, part II	2	1 IV
20. Mai	Pfingstpause		The second
21. Mai			
27. Mai			-2
28. Mai			-1
03. Jun	Wiederholung GSW, W- und Z-Physik	2	KJ
04. Jun	Physik der W- und Z-Bosonen, Teil II	2	1 KJ
10. Jun	Physik des Top-Quarks	2	IV
11. Jun	Physik des Top-Quarks, Teil II	2	1 IV
17. Jun	Einführung Higgs-Physik	2	KJ
18. Jun			-1
24. Jun	Suche nach dem Higgs-Boson	2	KJ
25. Jun	Suche nach dem Higgs-Boson, Teil II	2	1 KJ
01. Jul	Einführung Supersymmetrie	2	IV
02. Jul	Suche nach Supersymmetrie	2	1 IV
08. Jul	Sonstige Erweiterungen (Motivation + Suche	2	KJ
09. Jul	Sonstige Erweiterungen (Motivation + Suche	2	1 KJ
15. Jul	Klausur	3.94	-1 IV
16. Jul			-1

Ablauf der Vorlesung

<u>Termine</u>: Mo. 10:15 – 12:00, Di. 8.15-10:00 Uhr im SR I (Physik-HH)

<u>Dozenten</u>: Prof. K. Jakobs, Dr. lacopo Vivarelli

Gustav-Mie Haus, 3. Stock, Zi. 03-021 Sprechstunde: Fr. 11.00 – 12.00 Uhr

Tel.: 203 – 5713

Sekretariat: Frau Chr. Skorek, Tel. 203-5715

email: christina.skorek@physik.uni-freiburg.de oder

karl.jakobs@uni-freiburg.de

iacopo.vivarelli@physik.uni-freiburg.de

<u>Vorlesungsstil</u>: - Größtenteils Folien, die im Internet zur Verfügung gestellt werden:

https://portal.uni-freiburg.de/jakobs/Lehre/ss-13/hadron-collider

- Wichtige Ableitungen an der Tafel
- Zwischenfragen während der Vorlesung sind erlaubt

<u>Vorkenntnisse:</u> - Kerne u. Teilchen (Kursvorlesung)

- Elementarteilchenphysik II (gelesen im WS)
- Teilchendetektoren (empfehlenswert)

Übungen

<u>Termine</u>: Freitag von 10-12 Uhr im SR III (Physik-HH)

<u>Übungsleiter</u>: Francesca Ungaro, Dr. Iacopo Vivarelli

email: francesca.ungaro@physik.uni-freiburg.de

Übungsaufgaben: - Müssen wöchentlich gelöst werden (Hausaufgaben);

 Abgabe bis spätestens Mittwochs 10:00 Uhr (Briefkasten, Erdgeschoss Gustav-Mie Haus)

- Maximal zwei Personen können zusammenarbeiten

Teilweise werden Computer-Aufgaben gestellt
PYTHIA Monte-Carlo-Programm, Simulationsrechnungen,
CIP-Pool account

<u>Übungen:</u> - Dienen zur Besprechung der Aufgaben, korrigierte Blätter werden vom Assistenten zurückgegeben, mit Punkten bewertet;

 Jeder, der Aufgaben richtig gelöst hat muss in der Lage sein, diese an der Tafel vorzurechnen!

Kriterien zur Scheinvergabe

1. Übungen und Klausur

 Zur Scheinvergabe werden 50% der erreichbaren Gesamtpunktzahl, die sich aus Übungen und Klausur zusammensetzt, benötigt.

Gewichtung: Übungen 25 %

Klausur 75 %

 Termin der Klausur: Mo. 15. Juli 2013, 10:15 – 12:00 Uhr (Gegenstand ist der gesamte Stoff der Vorlesung)

Bei Nicht-Bestehen: Nachklausur, Mo. 30. Sep. 9:00 – 11:00 Uhr (Die in den Übungen erzielte Punktzahl geht dabei unverändert ein)

Anmeldung zur Klausur ist erforderlich, web-interface

Literaturangaben

(i) <u>Grundlagen (Standardmodell):</u>

- F.Halzen und A.D.Martin, Quarks & Leptons, John Wiley Verlag
- P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer Verlag.
- D. Griffiths, Einführung in die Elementarteilchenphysik, Akademie Verlag.

(ii) Hadron-Collider Physik:

- G. Kane, A. Pierce (Editors), Perspectives on LHC physics, World Scientific (2008).
- R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, Cambridge University Press.
- S.D. Ellis et al., Jets in Hadron-Hadron Collisions, arXiv:0712.2447.
- J.M. Cambell, J. Huston and W.J. Striling, Rep. Prog. Phys. 70 (2007) 89.
- Spezialartikel, Vorlesungen, die auf den Web-Seiten zur Verfügung gestellt werden