- 6. Energiemessung
- 6.1 Messprinzip
- 6.2 Energiemessung mit Halbleiterdetektoren
- 6.3 Energiemessung in Kalorimetern

6.1 Messprinzip

- Energiemessung kann dann durchgeführt werden, wenn Teilchen ihre Energie in Detektoren komplett deponieren
 - Niederenergiebereich: < ~1 MeV: Ionisationsdetektoren (α -Spektroskopie) Szintillatoren (γ - Spektroskopie) Halbleiterzähler (γ - Spektroskopie)
 - Hohe Energien: Elektromagnetische (für Elektronen, Photonen) und hadronische Kalorimeter (stark wechselwirkende Teilchen)
- Energie des Teilchens wird in ein elektrisches Signal (Ionisationsladung) oder in ein Lichtsignal (Szintillator- oder Cherenkov-Licht) umgewandelt Dieses Signal sollte proportional zur ursprünglichen Energie: E = α S Kalibration → α [MeV / S]
- Die Energie kann auch stichprobenartig gemessen werden ("sampling Detektor"); Dies funktioniert, solange die Proportionalität E ~ S erhalten bleibt

6.2 Energiemessung in Halbleiterdetektoren

- Durch Bildung von elektron-Loch-Paaren entstehen in Halbleitern freie Ladungsträger
- Kleiner W-Wert: Silizium: 3.6 eV
 Germanium: 2.8 eV
 Gas (zum vergleich): ~30 eV
 Szintillatoren: ~400 1000 eV (zur Erzeugung eines Photoelektrons)

→ enorme Vorteile in der erreichbaren Energieauflösung für Halbleiterdetektoren! (s. nächste Folie)

Bandlücken:	Silizium:	1.14 eV
	Germanium:	0.67 eV

→ geringe Bandlücke von Germanium erfordert Kühlung des Detektors, um thermisches Rauschen zu reduzieren

- Zur Ladungssammlung müssen Halbleiterzähler in Sperrrichtung betrieben werden (vgl. Kap. 5)
 - → Dioden mit pn-Übergang in Sperrrichtung Verarmungszone

 Zur Energieauflösung: Die Zahl N der erzeugten freien Ladungsträger ist in Halbleiterdetektoren wesentlich größer;

E ~ N

→ die relativen "statistischen" Schwankungen in der Zahl der erzeugten Ladungsträger und damit der "statistische" Anteil der Energieauflösung sind in Halbleiterzählern wesentlich kleiner

 $\Delta E / E \sim \sqrt{N} / N = 1 / \sqrt{N}$ (\Delta E / E)_{HLZ}/ (\Delta E / E)_{Szintll} = (\delta E / 700 eV) / (\delta E / 3 eV) = 6 10⁻²

Vergleich des ⁶⁰Co- γ-Spektrums, aufgenommen mit einem NaJ(TI)-Szintillator und einem Ge-Halbleiterdetektor [Ref. C. Grupen]

Einige Beispiele von gemessenen Elektron-Spektren

Gemessene Spektren von ²⁰⁷Bi Konversionselektronen mit einem Si(Li) Halbleiterzähler (links) und einem Flüssig-Argon-Ionisationsdetektor (rechts) [Ref. C. Grupen]

6.3 Energiemessung in Kalorimetern

Kalorimetersystem des ATLAS-Experiments

Calorimetry: = Energy measurement by total absorption, usually combined with spatial information / reconstruction

latin: calor = heat

However: calorimetry in particle physics does not correspond to measurements of ΔT

•The temperature change of 1 liter water at 20 ° C by the energy deposition of a 1 GeV particle is 3.8 10⁻¹⁴ K !

•LHC: total stored beam energy E = 10^{14} protons • 14 TeV ~ 10^{8} J

If transferred to heat, this energy would only suffice to heat a mass of 239 kg water from 0° to 100° C $[c_{Water} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}, m = \Delta \text{E} / (c_{Water} \Delta \text{T})]$

Important parameters of a calorimeter:

- Linearity of the energy measurement
- Precision of the energy measurement (resolution, △ E / E) in general limited by fluctuations in the shower process

worse for sampling calorimeters as compared to homogeneous calorimeters

• Uniformity of the energy response to different particles (e/h response)

in general: response of calorimeters is different to so called electromagnetic particles (e, γ) and hadrons (h)

6.3.1 Electromagnetic showers

- Particle showers created by electrons/positrons or photons are called electromagnetic showers (only electromagnetic interaction involved)
- Basic processes for particle creation: bremsstrahlung and pair creation

- Characteristic interaction length: radiation length X₀
- Number of particles in the shower increases, until the critical energy E_c is reached; For E < E_c the energy loss due to ionization and excitation dominates, the number of particles decreases, due to stopping in material

Longitudinal shower parametrization (t $[X_0]$ = thickness in units of X_0)

$$\frac{dE}{dt} = const \cdot t^a \cdot e^{-bt}$$

Shower depth (shower maximum) scales logarithmically with particle energy !

→ size of calorimeters growth only logarithmically with energy.

can be derived using a simple shower model (see exercises)

Lateral shower profile:

- The lateral shower profile is dominated by two processes:
 - Multiple Coulomb scattering
 - Relatively long free path length of low energy photons
- It is characterized by the so-called Molière radius ρ_M

 $\rho_M = \frac{21 \text{MeV}}{E_C} X_0 \approx 7 \frac{A}{Z} \left[\frac{g}{cm^2} \right]$

• About 95% of the shower energy are contained within a cylinder with radius r = 2 ρ_M

in general well collimated !

Example: $E_0 = 100 \text{ GeV}$ in lead glass $E_c = 11.8 \text{ MeV} \rightarrow t_{max} \approx 13, t_{95\%} \approx 23$ $X_0 \approx 2 \text{ cm}, R_M = 1.8 \cdot X_0 \approx 3.6 \text{ cm}$

6.3.2 Hadronic showers

- Hadrons initiate their energy shower by inelastic hadronic interactions; (strong interaction responsible, showers are called hadronic showers)
- Hadronic showers are much more complex then electromagnetic showers

- Several secondary particles, meson production, multiplicity ~ln(E)
- π⁰ components, π⁰ → γγ, electromagnetic sub-showers; The fraction of the electromagnetic component grows with energy, f_{EM} = 0.1 In E (E in GeV, in the range 10 GeV < E < 100 GeV)

 During the hadronic interactions atomic nuclei are broken up or remain in exited states

Corresponding energy (excitation energy, binding energy) comes from original particle energy \rightarrow no or only partial contribution to the visible energy

• In addition, there is an important neutron component

The interaction of neutrons depends strongly on their energy; Extreme cases:

- Nuclear reaction, e.g. nuclear fission \rightarrow energy recovered
- Escaping the calorimeter (undergo only elastic scattering, without inelastic interaction)
- Decays of particles (slow particles at the end of the shower) e.g. $\pi \rightarrow \mu v_{\mu} \rightarrow escaping particles \rightarrow missing energy$

These energy loss processes have important consequences: in general, the response of the calorimeter to electrons/photons and hadrons is different ! The signal for hadrons is non-linear and smaller than the e/γ signal for the same particle energy

Two hadronic showers in a sampling calorimeter

Red: electromagnetic component Blue: charged hadron component

Hadronic showers show very large fluctuations from one event to another \rightarrow the energy resolution is worse than for electromagnetic showers

6.3.3 Layout and readout of calorimeters

 In general, one distinguishes between homogenous calorimeters and sampling calorimeters

For homogeneous calorimeters: absorber material = active (sensitive) medium

- Examples for homogeneous calorimeters:
 - NaJ or other crystals
 - Lead glass
 - Liquid argon or liquid krypton calorimeters

(Scintillation light) (Cherenkov light) (Ionization charge)

 Sampling calorimeters: absorption and hadronic interactions occur mainly in dedicated absorber materials (dense materials with high Z, passive material) Signal is created in active medium, only a fraction of the energy contributes to the measured energy signal

Examples for sampling calorimeters

- (a) Scintillators, optically coupled to photomultipliers
- (b) Scintillators, wave length shifters, light guides
- (c) Ionization charge in liquids
- (d) Ionization charge in multi-wire proportional chambers

6.3.4 Energy resolution of calorimeters

 The energy resolution of calorimeters depends on the fluctuations of the measured signal (for the same energy E₀),
 i.e. on the fluctuation of the measured signal delivered by charged particles.

Example: Liquid argon, ionization charge: $Q = \langle N \rangle \langle T_0 \rangle \sim E_0$ where: $\langle N \rangle$ = average number of produced charge particles, $\sim E_0/E_c$ $\langle T_0 \rangle$ = average track length in the active medium

For sampling calorimeters only a fraction f of the total track length (the one in the active medium) is relevant; Likewise, if there is a threshold for detection (e.g. Cherenkov light)

- The energy resolution is determined by statistical fluctuations:
 - Number of produced charged particles (electrons for electromagnetic showers)
 - Fluctuations in the energy loss (Landau distribution of Bethe-Bloch sampling)
- For the resolution one obtains:

$$\frac{\Delta E}{E} = \frac{\Delta Q}{Q} \propto \frac{\sqrt{N}}{N} \propto \frac{\alpha}{\sqrt{E}}$$

The energy resolution of calorimeters can be parametrized as:

- α is the so called stochastic term (statistical fluctuations)
- β is the constant term (dominates at high energies)

important contributions to β are:

- stability of the calibration (temperature, radiation,)
- leakage effects (longitudinal and lateral)
- uniformity of the signal
- loss of energy in dead material
- γ is the noise term (electronic noise,..)

• Also angular and spatial resolutions scale like $1/\sqrt{E}$

Examples for energy resolutions seen in electromagnetic calorimeters in large detector systems:

Experiment	Calorimeter	α	β	γ
L3	BGO	< 2.0%	0.3%	0.4 MeV
BaBar	Csl (Tl)	(*) 1.3%	2.1%	
OPAL	Lead glass	(**) 5% (++) 3%		
NA48	Liquid krypton	3.2%	0.5%	125 MeV
UA2	Pb /Szintillator	15%	1.0%	
ALEPH	Pb / Prop.chamb.	18%	0.9%	
ZEUS	U / Szintillator	18%	1.0%	
H1	Pb / Liquid argon	11.0%	0.6%	154 MeV
D0	U / Liquid argon	15.7 %	0.3%	140 MeV

homogeneous calorimeters

sampling calorimeters

(*) scaling according to $E^{-1/4}$ rather than $E^{-1/2}$

(**) at 10 GeV

(++) at 45 GeV

hadronic energy resolutions:

Experiment	Kalorimeter	α	β	γ
ALEPH	Fe/Streamer Rohre	85%		-
ZEUS (*)	U/Szintillator	35%	2.0%	-
H1 (+) D0	Fe/Flüssig - Argon U/Flüssig - Argon	51% 41%	1.6% 3.2%	900 MeV 1380 MeV

(*) compensating calorimeter

(+) weighting technique

- In general, the energy response of calorimeters is different for e/γ and hadrons; A measure of this is the so-called e/h ratio
- In so-called "compensating" calorimeters, one tries to compensate for the energy losses in hadronic showers (→ and bring e/h close to 1)

 physical processes: - energy recovery from nuclear fission, initiated by slow neutrons (uranium calorimeters)
 - transfer energy from neutrons to protons (same mass) use hydrogen enriched materials / free protons

Quelle: CERN

Blei-Wolframat-Szintillatorkristalle zur Energiemessung im CMS-Experiment am LHC

Kalorimeter des UA2-Experiments mit Plastikszintillatoren als aktivem Material