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[lustration of jet algorithms
NOT a problem set! We will rather discuss jet algorithms based on

the examples shown below. These examples are designed to illustrate
common issues with some jet algorithms and how others avoid those issues.

1. Cone-jet algorithm

In the past, the most popular jet reconstruction algorithm at hadron colliders was a seeded-
iterative-cone algorithm, despite the fact that such an algorithm is not “infrared-safe”. The

algo

rithm runs on calorimeter clusters as inputs (but a list of particles can also be given

as inputs), and it proceeds as follows:

(i)
(i)

(iii)

(vi)

The clusters or particles above a certain threshold (say pr > 1GeV) are sorted in
order of pr starting from the highest to lowest transverse momentum.

The algorithm starts with the highest transverse momentum cluster/particle which
has not been assigned to a jet, and a temporary jet is formed containing all particles
within a certain geometric distance to the seed particle. In this problem, we will use

AR = /(Ay)2 + (A¢)?2 < 0.4. The jet centroid (or barycenter) is also computed,
which is the average ppr-weighted n and ¢ of the particles in the jet:
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From this new jet centroid, the algorithm is re-run, keeping all clusters/particles
within AR < 0.4, and obtaining a new jet centroid. The iteration continues until the
jet centroid stabilizes, and a stable jet has been reconstructed. The jet momentum
is then formed from the vector sum of the individual cluster momenta. Please note
that throughout this and the next problem, you can simply approximate the vector
sum of the jet momenta as a scalar sum of the jet pp.

The particles associated with the jet are removed from the list, and the algorithm
starts again with the next highest transverse momentum cluster/particle still avail-
able. The algorithm stops when there are no more particles left.

There is also typically a merging/splitting procedure, which treats the overlap regions
between two jets in a systematic way. Jets can be merged if the overlap region is
large. For this Problem, we will ignore this step.

Jets are also usually required to exceed a threshold in transverse momentum. For
this problem, we will use pp > 10 GeV.

Run the cone algorithm described above on one hypothetical event by hand using the input

part

(a)
(b)

icles (or clusters) listed in Table

What jets finally result from the cone algorithm described above?

Now consider a slight change in the particle list. Particles 1 and 2 will suffer “collinear”
splitting, a process that gives “infinite probability” when calculated in perturbative
QCD. Thus, instead of particles 1 and 2, we consider particles 1la and 1b, as well as
particles 2a and 2b, respectively, as given in Table [2, How does the jet content of the
event change under this redefinition of particles?



Table 1: Particles (or calorimetric clusters) for one event.

Particle/Cluster Number | pr [GeV] Yy )
1 60 1.5 1.8
2 30 0.2 0.2
3 26 -0.1 0.4
4 25 0.4 |-0.14
) 9 -0.15 | 0.45
6 8 0.5 -0.1
7 6 14 | 1.75

Table 2: New particles that replace particle 1 and 2 in Table

Particle/Cluster Number | pr [GeV] | y o)
la 95 1.5 | 1.8
1b 5) 1.5 | 1.82
2a 20 0.23 | 0.17
2b 10 0.16 | 0.25

2. (Anti-)kr-jet algorithm

Let’s now consider “infrared-safe” algorithms, in particular the k7 and Anti-kp algorithms,
with parameter R = 0.4. One should note that both the ATLAS and CMS experiments
have chosen to use the Anti-kp algorithm as the standard jet reconstruction algorithm.

The k7 algorithm should proceed as follows:
(i) From the list of clusters/particles above a certain threshold (say pr > 1 GeV), deter-
mine the following quantities (sometimes strangely referred to as “distances”):
e For every pair of particles 7 and j, determine d;;, where

ARZ
dij = mln(p%r(fi;p%?j) Rg”

where AR, = (yi — y;)* + (¢i — ¢;) and a = 1.
e For every particle 7, also determine d;p, where
diB = p%“?z ’
again with a = 1.
(ii) Determine the smallest “distance” between all the d;; and d;p.

e If this smallest distance is a d;j, then combine particles 7 and j into a single
particle (by adding their 4-vectors), and go back to step (i). Treat jets/particles
as massless for this problem.

o If this smallest distance is a d;p, then call particle ¢ a jet, and remove it from
the list of particles. Then go back to step (i) for the remaining particles.

(iii) The algorithm stops, when there are no more particles to consider. Jets are then
removed below a certain transverse momentum threshold, let’s say 10 GeV for this
problem.

The Anti-k7 algorithm is equivalent to the kr algorithm except that now, a = —1 (note
that the case with a = 0 is called the Cambridge-Aachen jet algorithm).

Run the algorithms described above on one hypothetical event by hand using the input
particles (or clusters) listed in Table



(a) What jets finally result from the kp algorithm described above?
(b) What jets result from using the Anti-k7 algorithm instead?
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Repeat part (a) with the change in particle list: instead of particle 2 from Table
consider particles 2a, 2b from Table [2] instead.

(d) What do you notice about the types of particles that the k7 algorithm first focuses
on, in comparison with the types of particles that the Anti-kp algorithm first focuses
on?



