6. Silicon Strip and Pixel Detectors

- 6.1 Introduction
- 6.2 Basic properties of silicon
- 6.3 Silicon strip detectors
- 6.4 Silicon pixel detectors
- 6.5 Radiation damage of silicon detectors
- 6.6 Vertexing and impact parameter measurements
- 6.7 The ATLAS and CMS Central Tracking Detectors

6.1 Introduction, the use of silicon detectors for tracking

- Silicon detectors can be viewed as solid-state ionisation chambers
- The application as highly segmented tracking detectors emerged in the 1980s, however, expensive and difficult at first (before: applications in energy measurement, germanium and silicon detectors)
- Increased commercial use of Si-photolithography and availability of VLSI electronics lead to a boom for Si-detectors in the 1990s – and it still goes on, although we need R&D on Si radiation hardness...
- Nearly all high energy physics experiments use Silicon Detectors as innermost high-precision tracking devices
- High energy physics experiments are now exporting Si-technology back to the commercial world (Medical Imaging)

Evolution in Si-Detector Area

Evolution in Si-Detector Area

All e⁺e⁻ and pp collider experiments have / had high precision semiconductor detectors close to the interaction region

CMS: full silicon tracking detector

Tracking in pp Collisions at the LHC

position of tracking detectors (silicon pixel, silicon strips and straw tubes) 1200 tracks every 25 ns

or 10¹¹ per second

→ high track density, but in addition high radiation dose for detectors

10^{15} (1 MeV) n_{eq} /cm² / 10 y

or 600 kGy through the ionization of mips in 250 μm silicon detectors

LHC: 10⁶ times the track rate from LEP HL-LHC (High Luminosity LHC, after 2026): another factor of 10 compared to LHC

6.2 Basic properties of silicon

• Silicon is a semi-conductor element in the 4th group of the periodic system

Band gap of 1.1 eV

The intrinsic conductivity is very low:

 $\sigma_i = e \cdot N_i (\mu_e + \mu_h)$

- Carrier density at 300 K:
 - 1.5.10¹⁰ cm⁻³ compared to 5.10²² Si atoms per cm⁻³
 - often dominated by impurities

- "Doping": Small admixtures of type III or type V elements increase conductivity
 - Donors like Phosphorous give extra electron \rightarrow n-type Si
 - Acceptors (e.g. Boron) supply extra hole → p-type Si
 - Contact between p- and n-Si forms p-n-junction
 - Doping dominates conductivity as N_i << N_D
 - for n-type Si: $\sigma_{\rm D} = \mathbf{e} \cdot \mathbf{N}_{\rm D} \cdot \boldsymbol{\mu}_{\rm e}$

n-type silicon

- Si: 4 valence electrons
- Add elements from Vth group: 5 valence electrons
- Donors give away one electron
- n-type: electron concentration n larger than hole concentration p
 - n ≅ N_D
 (N_D = donor concentration)

p-type silicon

- Si: 4 valence electrons
- Add elements from III-rd group: 3 valence electrons
- Acceptors miss one electron
- p-type: holes are majority carriers
 - p ≅ N_A
 - $(N_A = acceptor concentration)$

Mobility of electrons and holes as a function of the electric field

Semiconductor materials suited for particle detectors

Semiconductor	band gap	intrinsic	average	W_{eh}	mobility		$\operatorname{carrier}$
	(eV)	carrier conc.	\mathbf{Z}	(eV)	$\mathrm{cm}^2/\mathrm{Vs}$		life time
	85. fel	(cm^{-3})		N 104	е	\mathbf{h}	
Si	1.12	$1.45 \cdot 10^{10}$	14	3.61	1450	505	$100 \mu s$
Ge	0.66	$2.4 \cdot 10^{13}$	32	2.96	3900	1800	
GaAs	1.42	$1.8 \cdot 10^6$	32	4.35	8800	320	110 ns
CdTe	1.44	10^{7}	50	4.43	1050	100	$0.1\text{-}2\ \mu s$
CdZnTe	${\sim}1.6$		49.1	4.6	$\sim \! 1000$	50 - 80	$\sim \mu { m s}$
CdS	2.42		48+16	6.3	340	50	
HgI_2	2.13		62	4.2	100	4	$\sim \mu { m s}$
InAs	0.36		49 + 33		33000	460	
InP	1.35		49 + 15		4600	150	
ZnS	3.68		30+16	8.23	165	5	
PbS	0.41		82 + 16		6000	4000	
Diamond	5.48	$< 10^{3}$	6	13.1	1800	1400	$\sim 1 \ \mathrm{ns}$

Materials favoured with: low Z (minimize material, in terms of radiation length) fast, i.e. high mobility or charge carriers high charge carrier lifetime affordable prize / availability

Medical applications (γ ray absorption) \rightarrow high Z-materials favoured

p-n-Junction

- Diffusion of e⁻ from n-side and h⁺ from p-side
- Recombination on other side, free charges disappear around junction ("depletion")
- Neutral p- or n-Si becomes charged → E-Field
- External field can increase or decrease depletion zone
- Depletion is what we want for detectors!

Charge carrier density:

$$n_{free,e-} = \int_{E_c=0} N(E) \cdot F(E) dE$$

 $np = n_i^2 = N_C N_V \cdot \exp(-E_g / kT)$

6.3 Silicon Strip detectors

- Take a p-n-diode ٠
- Segment it •
- Apply a voltage •
- Wait for a MIP to • deposit charge
- Charges separate • and drift in E-field

- Take a p-n-diode ٠
- Segment it
- Apply a voltage
- Wait for a MIP to • deposit charge
- Charges separate • and drift in E-field
- This gives a signal • in the p-strips

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias, V_r < 0)

V,

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias)
- Depletion zone grows from p-n-junction towards the back side

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias)
- Depletion zone grows from p-n-junction towards the back side

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias)
- Depletion zone grows from p-n-junction towards the back side

$$w_{depletion} = \sqrt{\frac{2\varepsilon}{qN_{p}}(V_{bias} - V_{r})} V_{r}$$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias)
- Depletion zone grows from p-n-junction towards the back side

$$w_{depletion} = \sqrt{\frac{2\varepsilon}{qN_D}(V_{bias} - V_r)} V_r$$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias)
- Depletion zone grows from p-n-junction towards the back side

$$w_{depletion} = \sqrt{\frac{2\varepsilon}{qN_D}(V_{bias} - V_r)} V_r$$

- MIP charge in 300 µm Si is 4fC (22.000 e⁻h⁺-pairs)
- Free charge in 1 cm² Si-Detector 10⁴ times larger (T=300K), so signal is invisible. Options:
 - Cryogenic operation
 - E-field to get rid of free charge
- Apply external Voltage V_r to deplete Si from charges (reverse bias)
- Depletion zone grows from p-n-junction towards the back side

$$w_{depletion} = \sqrt{\frac{2\varepsilon}{qN_D}(V_{bias} - V_r)} V_r$$

Signal

- Depleted piece of Si, a MIP generates e⁻h⁺-pairs...
- e⁻h⁺-pairs separate in Efield, and drift to electrodes
- Moving charges -> electric current pulse
- Small current signal is amplified, shaped and processed in ASICs ("chips") on read-out electronics

Some subtleties

- Even under reverse bias, there is a permanent thermal current going into the amplifiers
- Amplifying this current consumes power, generates heat and noise
- Solution: decouple strips from amplifiers for DC signals only -> AC-coupling
- Integration of capacitors into Si-detector possible (and common today)

More Subtleties

- Diodes need to be on same potential but electrically separated (to avoid shorting them)
- Solution: decouple strips with bias resistors

– ~ 1 MΩ

Schematic Si-Detector

- This detector will deliver 2D information – we need one more coordinate:
- Take another detector and place it on top with orthogonal strips
- Or segment the n-side
 (backside) as well
 -> double-sided detector
- Both will work but one has to think about the angle of the two Si-planes

Angle between two Si-Detectors

N hits per readout cycle generate N² ambiguities in hit position

Ambiguities are reduced by stereo angle < 90°

ATLAS Reality: O(10) hits per detector module per 25 ns.

Stereo angle of few degrees.

Performance: Resolution

- Spatial resolution σ:
 - Dominated by strip pitch d
 - Single strip hits: $\sigma = d/\sqrt{12}$
 - Double strip hits improve resolution (weighted average)
 - Ratio single/double hits gets worse for larger pitches

Pitch	Тур. σ	$\sigma_{ m naive}$ / σ
25 µm	2.6 µm	2.8
60 µm	9 µm	1.9
100 µm	29 µm	1

- → Resolution worsens rapidly with increasing pitch
- Higher S/N \rightarrow more two-strip hits
 - \rightarrow better resolution
- An analogue readout has better space resolution than a binary one

Performance: Rate

• Rate:

- Signal collection $t_{collect} \sim 10$ ns
- Signal shaping in front end electronics: $t_{shape} \ge t_{collect}$
- A lot of Si-detectors operate successfully at LHC speed (25ns)

Signal and Noise

- Noise "Signal" from strips has a Gaussian shape
- MIPs deposit ~100 keV energy, according to Landau distribution, broadened by noise
- Need to separate signal and noise
 - → threshold value
 → efficiency
- Figure of merit: Signal-to-Noise
 ratio or S/N
- S/N also affects resolution!

Some details on detector designs

- Detector has edges, which are cut Silicon with many defects -> generation of current
 - Solution: add structures to avoid depleting edges, and grade down potential in steps: <u>Guard rings</u>
 - Guard rings are p-implants that run around the active detector area
- Bias resistors

Example of a Si-detector with a single guard ring

Wire Bonding

- Si detector needs connection to readout electronics
- High connection density with O(15) wires per mm

•

• Ultra-sonic bonding of ~20µm wires with semiautomatic system

Single Wire Bond Foot

Full Si-Detector System

- So far we only have a piece of Silicon with some electronics attached, which will give us a 3D space point...
- Need to put many (thousands) of Si-Detectors together in a smart way
 - − Require several space points → several layers
 - − Need to see all charged tracks → hermetically closed
 - For collider experiments (e.g. ATLAS, CMS) this means a multilayer cylindrical structure
- Some examples will follow

CMS Silicon Tracker

Micro strip:

- 214 m² of silicon strip sensors
- 11.4 m strips
- Diameter: 2.4 m

Pixel:

- Inner three layers: silicon pixels, ~1m²
- 66 million pixels
- Precision: $\sigma(r\phi) \sim \sigma(z) \sim 15 \ \mu m$