- 5. Tracking Detectors
- 5.1 Momentum reconstruction in a magnetic field
- 5.2 Magnetic spectrometers
- 5.3 Multi-wire proportional chambers
- 5.4 Drift chambers
- 5.5 Time projection chambers
- 5.6 Microstrip gas chambers
- 5.7 Ageing of gas detectors
- 5.8 Large scale gaseous muon detectors

Silicon-based tracking detectors are discussed in Chapter 6 (together with impact parameter resolutions)

5.8 Large scale gaseous muon detectors

Muon Detectors

- Muon detectors are tracking detectors (e.g. wire chambers)
 - they form the outer shell of the (LHC) detectors
 - they are not only sensitive to muons (but to all charged particles)!
 - just by "definition": if a particle has reached the muon detector, it's considered to be a muon (all other particles should have been absorbed in the calorimeters)
- Challenge for muon detectors
 - large surface to cover (outer shell)
 - keep mechanical positioning over time

Aluminum tubes with centra wire filled with 3 bar gas

- ATLAS
 - 1200 chambers with 5500 m²
 - also good knowledge of

(inhomogeneous) magnetic field needed

ATLAS muon system

Table 6.2: Main MDT chamber parameters.

Parameter	Design value
Tube material	Al
Outer tube diameter	29.970 mm
Tube wall thickness	0.4 mm
Wire material	gold-plated W/Re (97/3)
Wire diameter	50 µ m
Gas mixture	Ar/CO ₂ /H ₂ O (93/7/≤ 1000 ppm)
Gas pressure	3 bar (absolute)
Gas gain	2 x 10 ⁴
Wire potential	3080 V
Maximum drift time	\sim 700 ns
Average resolution per tube	$\sim 80 \mu{ m m}$

Drift Tubes (DT) in ATLAS: inner detector and muon spectrometer

Classical detection technique for charged particles based on gas ionisation and drift time measurement

Combining Tracking with particle ID: ATLAS TRT

 e/π separation via transition radiation: polymer (PP) fibres/foils interleaved with DTs

Electrons radiate \rightarrow higher signal Particle Identification by counting the number of high-threshold hits

Total: 370000 straws

Barrel ($|\eta| < 0.7$): 36 *r*- ϕ measurements / track Resolution ~130 µm / straw

18 end-cap wheels ($|\eta| < 2.5$): 40 or less *z*- ϕ points

ATLAS muon system

Muon detector system In the forward region

CMS Muon system

CMS

