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Erwartete Produktionsraten am LHC

• Inelastische Proton-Proton Reaktionen:         1  Milliarde / sec
• Quark -Quark/Gluon Streuungen mit        ~100  Millionen/ sec

großen transversalen Impulsengroßen transversalen Impulsen  

• b-Quark Paare                                                5  Millionen / sec 
• Top-Quark Paare                                            8                 / sec

• W   e 150                / sec
• Z   e e                                                         15                / sec

• Higgs (150 GeV)                                           0.2               / sec
• Gluino, Squarks (1 TeV)                               0.03              / sec

Dominante harte Streuprozesse:  Quark - Quark
Quark GluonQuark - Gluon 
Gluon - Gluon



How to Select Interesting Events?

Bunch crossing rate: 40 MHz, ~20 interactions per BX (109 evts/s)
can only record ~200 event/s (1.5 MB each), still 300 MB/s data ratey ( )

Need highly efficient and highly selective TRIGGER
raw event data (70 TB/s) are stored in pipeline until trigger decision
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ATLAS trigger has 3 levels (CMS similar with 2 levels)
Level-1: hardware, ~3 µs decision time, 40 MHz  100 kHz
Level-2: software, ~40 ms decision time, 100 kHz  2 kHz
Level-3: software, ~4 s decision time, 2 kHz  200 Hz



ATLAS Trigger System 

Main trigger objects: 
at Level 1: 

- e/ clusters (calo) 
- Muons  (muon)
- Jets (high pT, calo)  
- Missing transverse

energy (calo) 



LHC data handling, GRID computing

LCG/EGEE/OSG e-Science
Grid is in production:

World-wide Coverage
Over 200 sites
20’000 CPUs
Multi-petabyte storage

Trigger system selects  
~200 “collisions” per sec.

LHC data volume per year:LHC data volume per year: 
10-15 Petabytes  

= 10-15 ·1015 Byte



From Physics to Raw Data

Actually recorded are raw data with ~400 MB/s for ATLAS and CMS
mainly electronics numbers

e g number of a detector element where the ADC (Analog to Digitale.g. number of a detector element where the ADC (Analog-to-Digital 
converter) measured a signal with x counts...



From Raw Data To Physics

We need to go from raw data back to physicsWe need to go from raw data back to physics
reconstruction + analysis of the event(s)



Towards Physics: 
some aspects of reconstruction of physics objects

• As discussed before, key signatures at Hadron Colliders are

Leptons:   e   (tracking + very good electromagnetic calorimetry) 
(d di t d t bi ti f i t ki d (dedicated muon systems, combination of inner tracking and 
muon spectrometers) 

 hadronic decays:  →  + n 0 +  (1 prong) 
+ - + + n 0 +  (3 prong)→ +-+ + n 0 +  (3 prong)

Photons:     (tracking + very good electromagnetic calorimetry) 

Jets:                electromagnetic and hadronic calorimeters
b-jets identification of b-jets (b-tagging) important for many physics 

studiesstudies

Missing transverse energy: inferred from the measurement of the total energy 
in the calorimeters; needs understanding of allin the calorimeters; needs understanding of all 
components… response of the calorimeter to low
energy particles 



Requirements on e/ Identification  in ATLAS/CMS

Electron identification 
Isolated electrons: e/jet separation

R ~ 105 needed in the range p > 20 GeVRjet ~ 105 needed in the range pT > 20 GeV 
Rjet ~ 106 for a pure electron inclusive sample (e ~  60-70%) 

Soft electron identification – e/ separation
B physics studies (J/B physics studies (J/
Soft electron b-tagging  (WH, ttH with H  bb)

Photon identification
/jet and /0 separation 

Main reducible background to H  
comes from jet-jet and is  2 ·106 larger than signal 

Rjet ~5000 in the range ET >25 GeVj
R (isolated high-pT 0) ~3

Identification of conversions



Jet reconstruction and energy measurement 

• A jet is NOT a well defined object
(fragmentation, gluon radiation, detector response)

• The detector response is different for particles
interacting electromagnetically (e,) and for
hadrons
→ for comparisons with theory, one needs to
correct back the calorimeter energies to the 
„particle level“ (particle jet) 
Common ground between theory and experiment 

• One needs an algorithm to define a jet and to 
measure its energy
conflicting requirements between experiment and
theory (exp. simple, e.g. cone algorithm, vs. 
theoretically sound (no infrared divergencies))theoretically sound (no infrared divergencies))

• Energy corrections for losses of fragmentation products
outside jet definition and underlying event or pileupj y g p p
energy inside 



Main corrections:

I l l i t h diff t t l t / h t d• In general, calorimeters show different response to electrons/photons and 
hadrons

• Subtraction of offset energy not originating from the hard scattering
(inside the same collision or pile-up contributions, use minimum bias data 
to extract this)to extract this)

• Correction for jet energy out of cone
( t d ith j t d t M t C l i l ti )(corrected with jet data + Monte Carlo simulations) 



3 2  First results on the performance3.2  First results on the performance
of the LHC Detectors 



Detector Hardware Status in 2010

Very small number of non-working detector
channels (out of several millions) in both
experiments



TrackingTracking



(i)  Inner Detector performance:  hits, tracks, resonances,... 
• Very good agreement for the average number of hits on tracks in the• Very good agreement for the average number of hits on tracks in the

silicon pixel and strip detectors

• Material distribution in the inner detector is well described in Monte Carlo• Material distribution in the inner detector is well described in Monte Carlo
(nice cross-check with K0-mass dependence on radius in the Monte Carlo)  



Resonances:  CMS tracking detector
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…. towards b-tagging

Transverse and longitudinalTransverse and longitudinal
Impact parameters w.r.t. vertex

One of the 8 jets tagged with the secondary vertex j gg y
tagger (SV0) (Light jet probability: 10-4)



…. CMS b-tagged candidate event

Primary 
Vertex

Secondary Vertex (2 ellipse) 
with 4 attached trackswith 4 attached tracks

All other tracks 
Pt > 500 MeV

CMS experiment at LHC, CERN
Run 124022 / Event 13598392
2009 12 12 00 26 16 CEST2009-12-12 00:26:16 CEST
Four Tracks Secondary Vertex



TRT and electron identification
The intensity of the transition radiation in the TRT is proportional
to the Lorentz Factor  = E/mc2 of the traversing particle.
Number of high threshold hits is used to separate electrons and pions

conversion

“Tail” towards high-threshold hits is due to
electrons from conversion candidates



(ii) Calorimeters: resonances in the el.magn. calorimeters

�  

C2
Photon shower shape in the first
compartment of ATLAS EM calorimeter C2compartment of ATLAS EM calorimeter



C1Note: soft photons are challenging in ATLAS:
lot of material in front of EM calorimeter
(cryostat, coil): ~ 2.5 X0 at η=0



Reconstructed high PT electrons from Z  e+ e- decays in the calorimeterg T y
+ track (matched) in the inner detector
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(iii) Jets and missing transverse energy

Particle-Flow algorithm:

conversion
- Identify all type of particles:
• Photons (ECAL only)
• Charged Hadrons (Tracker only)

El t (ECAL T k ) • Electrons (ECAL+Tracker)
• Neutral Hadrons (CALO only) 
• Muons (muon chambers + Tracker)
• And then , �0, …And then , � , …
- Obtain the best energy estimate 

for each type of particle 



An example of a two-jet event reconstructed in ATLAS



(iv) Missing transverse energy, ET
miss

Sensitive to calorimeter performanceSensitive to calorimeter performance  
(noise, coherent noise, dead cells, 
mis-calibrations, cracks, etc.) and 
backgrounds from cosmics beamsbackgrounds from cosmics, beams, …

The missing ET
is well described in simulation !

conversion



(v) Muons 



(v) Muons 



(v) Muons 



3 3   Relativistic Kinematics 3.3   Relativistic Kinematics 

Throughout this section natural units are used i e h = c = 1Throughout this section, natural units are used, i.e. h = c = 1.

The following conversions are useful:   hc =   197.3  MeV fm
(hc)2 = 0 3894 (GeV)2(hc)  0.3894 (GeV)



Lorentz Transformations
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Lorentz Transformations (cont.) 

Other 4-vectors transform in the same way:

e.g. space-time vectors  x = (t,x)g p ( , )

Scalar products of 4-vectors are Lorentz invariant, 
independent of the reference frame:independent of the reference frame: 

Therefore one should try to express quantities, like cross sections in terms 
of scalar products of 4-vectors.  

330



Centre-of-mass energy

• In the collision of two particles with masses m1 and m2 the total centre-of-mass
energy can be expressed in the Lorentz-invariant form: 

   
1/22 2

1 2 1 2 ,cmE E E     p p
1/22 2

1 2 1 2 1 22 (1 cos )m m E E        

where is the angle between the particles.



Laboratory Frame
In the laboratory frame, one of the particles, e.g. particle 2, is at rest. The 
centre-of-mass energy is then given by: 

2 2 1/2
1 2 1 2( 2 )cm labE m m E m  

The velocity of the centre-of-mass system in the lab frame is: 

1 2/ ( ) ,cm lab labE m  p 1 2( ) ,cm lab lab p

1l b l bp p   (E m ) / Ewhere and

Th t f t f ti l 1 d 2 f it d

1lab labp p cm  (E1lab m2 ) / Ecmwhere                     and 

The centre-of-mass momenta of particles 1 and 2 are of magnitude

2 .cm lab
mp pcm lab

cm

p p
E



Examples

• A beam of K+ mesons with a momentum of 800 MeV hits a proton target at 
rest. 

mK = 493.7 MeV,  mp = 938 MeV,  pK = 0.80 GeV

Then the centre-of-mass energy is calculated to be: Ecm = 1.699 GeV
pcm = 0.442 GeV

• At the LHC protons collide in their centre-of-mass system with a centre-of-mass
energy of 14 TeV. gy

This corresponds to an energy of an incoming proton in a fixed target 
experiment (protons on protons)  of  ~ 1017 GeV 

(such energies can only be reached in cosmic rays!
but flux is not high enough to produce large numbers of interesting particles) 



Comparison with cosmic rays



GZK (Greisen-Zatsepin-Kuzmin) Limit

The sharp drop in the cosmic ray spectrum at 1020 eV is explained by interactions of 
protons with photons from cosmic background radiation 

p p     
Auger Experiment
http://arxiv.org/abs/1002.1975v14
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At CMS energies around 1 GeV  the cross 
sections for -production through the ∆-
resonance becomes large. Thus protonsresonance becomes large. Thus protons 
loose energy.

Cosmic protons  at this energy have a 
f th f 160 ML (GZK h i )mean free path of 160 MLy (GZK horizon).  

Thus extragalactic protons with energies 
larger than 1020 eV should not reach the 
earth. Recent measurements of the Auger

The combined energy spectrum is dotted with two functions and
compared to data from the HiRes instrument The systematicearth. Recent measurements of the Auger 

experiment confirm this cut-off.  
compared to data from the HiRes instrument. The systematic 
uncertainty of the flux scaled by E3 due to the uncertainty of the 
energy scale of 22% is indicated by arrows. 



Lorentz invariant amplitudes

The matrix elements for the scattering or decay process are written in terms of an
invariant amplitude –i M. As an example, the S-matrix for 22 scattering is 
related to M byrelated to M by

' ' 4 4 ' '
1 2 1 2 1 2 1 2| | (2 ) ( )p p S p p I i p p p p     

' '
1 2 1 2

1/2 1/2 ' 1/2 ' 1/2
1 2 1 2

( , ; , )
(2 ) (2 ) (2 ) (2 )

p p p p
E E E E


M

The normalization is such that ' 3 3 '| (2 ) ( )p p   p p

Th t k i t l l t th i i t lit d M f i h iThe task is to calculate the invariant amplitude M for a given physics process.
In particle physics this is achieved using the Feynman calculus 
(see  lecture on Particle Physics II) 



Particle Decays

The partial decay rate of a particle of mass m  into n bodies in its rest frame
is given in terms of the Lorentz-invariant matrix element M by

d  (2 )4

2m
| M |2 dn (P; p1,, pn )

where dn is an element of n-body phase space given by:

dn (P; p1,, pn )  4 (P  pi
i1

n

 ) d 3pi

(2 )32Eii1

n





Survival probability of Decay

If a particle of mass m has mean proper lifetime of  (=1/)  and an energy-
momentum 4-vector of (E,p), then the probability that it lives for a time t or
greater before decaying is given bygreater before decaying is given by

P(t )  e t /  e mt/E

and the probability that it travels a distance x or greater is

( )

and the probability that it travels a distance x or greater is

/| |( ) mx pP x e ( )P x e



Example (i): Two-Body Decay

In the rest frame of a particle of mass m,
decaying into two particles labelled 1 and 2

E1 
m 2 m2

2 m1
2

2m
,

| p1 || p2 |

m 2  (m1 m2 )2  m 2  (m1 m2 )2 



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1/2
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1 2  1 2  

2m
,

d  1 | M |2 | p1 |dd 
32 2

| M | 1

m 2
d ,

where d = d1d(cos1) is the solid angle of particle 1



The invariant mass m of the mother particle in a two-body decay is given 
by m = Ecm using the previous formula:

1/22 2
1 2 1 2

1/22 2

( ) ( )cmE E E p p     

 
1/22 2
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Generalisation: the invariant mass of n particles is given by:p g y

m = (p1 + p2 + p3 +....+ pn )2



Example (ii): Three-Body Decay

Defining pij = pi + pj and m2
ij = p2

ij

then m2
12 + m2

23 + m2
13 = m2 + m2

1 + m2
2 + m2

3

d 2 (P )2 2 2 2 Eand m2
12 = (P - p3)2 = m2 + m2

3 – 2 mE3

E3 is the energy of particle 3 in the rest frame of m.

In that frame, the momenta of the three decay particles lie in a plane.



The relative orientation of these three momenta is fixed if their energies are known.
The momenta can therefore be specified in space by giving three Euler angles 
(,,) that specify the orientation of the final system relative to the initial particle(,,) that specify the orientation of the final system relative to the initial particle

21 1 | | (cos )d dE dE d d d    M

Alternatively

1 25 | | (cos )
(2 ) 16

d dE dE d d d
M

  


  M

2
1 3 12 1 35 2

1 1 | | | | | |
(2 ) 16

d dm d d
M

    M p p

where (|p*1|, *1) is the momentum of particle 1 in the rest frame of 1 and 2,

and 3 is the angle of particle 3 in the rest frame of the decaying particleand 3 is the angle of particle 3 in the rest frame of the decaying particle.



Three-Body Decay (cont.)



Sequential 2-Body Decays

Particles participating in sequential two-body decay chain. Particles labeled
1 and 2 are visible while the particle terminating the chain (a) is invisible.
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If visible particle 1 has
non-zero mass m1 



Differential Cross Section
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Mandelstam Variables (two-to-two process)
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Cross section

Using the relations given above, the two-body cross section can 
be written as:

Advantage to use Lorentz 
invariant quantities, like t.
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The variable  t  is given by:

2 2 2
1 3 1 3 1 3( ) ( ) 4 sin ( / 2)t E E p p p p     1 3 1 3 1 3

2
0 1 3

( ) ( ) 4 sin ( / 2)

4 sin ( / 2)
cm cm cm cm cm cm cm

cm cm cm

t E E p p p p

t p p



 

where cm is the angle between particle 1 and 3. cm g p

The limiting values t0 (cm =0) and t1 (cm = ) for 22 scattering are
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The centre-of-mass energies and momenta of the incoming particles are

2 2 2 2
1 2 2 1

1 2,
2 2cm cm

s m m s m mE E
s s

   
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2 2s s

For E3cm and E4cm,  change m1 to m3 and m2 to m4   (same particles).

1lab 22 2 andicm icm i icm

p m
p E m p

s
  

Here the subscript lab refers to the frame where particle 2 is at rest.



3 4   Important kinematic Variables 3.4   Important kinematic Variables 
in pp collisions 



(i) Rapidity y

Usually the beam direction is defined as the z axis  (Transverse plane: x-y plane).  

The rapidity y is defined as:The rapidity  y  is defined as: 

ln tanh-1z zE+ p p1y = =
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   ln tanh
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y = =
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Under a Lorentz boost in the z-direction to a frame with velocity 

the rapidity y transforms as: 1tanhy y - the rapidity y transforms as: tanhy y 

Hence the shape of the rapidity distribution dN/dy is invariant as areHence the shape of the rapidity distribution dN/dy is invariant, as are
differences in rapidity.



(ii) Pseudorapidity 
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z
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For p >> m, the rapidity may be expanded to otainp , p y y p
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where cos = pz/p.

Identities: sinh cos , cosh 1/ sin , tanh cos       



Relation between pseudorapidity  and polar angle θ



(iii) Distance in   space: 

ϕ
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η
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η
η0

E p 
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Pseudorapidity :

Distance in -: 2 2

ln tan( / 2)  

Distance in  : 2 2R      



(iv) Invariant cross section

The invariant cross section may also be rewritten

3 3 2

3 2( )
d d dE
d d d d d d
  


 3 2( )T T Td p d dy p dp dyd p 

The second form is obtained using the identity dy/dpz = 1/E.

The third form represents the average over .p g 



(v) Transverse Energy

At hadron colliders, a significant and unknown proportion of the energy of the
incoming hadrons in each event escapes down the beam-pipe. Consequently g y
if invisible particles are created in the final state, their net momentum can only
be constrained in the plane transverse to the beam direction . Defining the 
z-axis as the beam direction, this net momentum is equal to the missing 
transverse energy vector

missing transverse energy ( )miss i E p

h th th t t f ll i ibl fi l t t

missing transverse energy ( )T T
i

i E p

where the sum runs over the transverse momenta of all visible final state 
particles.



(vi) Momenta of invisible particles

Consider a single heavy particle of mass M produced in association with visible
particles which decays to two particles, of which one (labelled particle 1) is 
invisible. The mass of the parent particle can be constrained with the quantity 

Transverse mass
MT defined by

2 2 2

2 2
1 2

[ (1) (2)] [ (1) (2)]

2[ (1) (2) (1) (2)]
T T T T T

T T T T

M E E

m m E E

   

    

p p

p p

h

1 2 2[ (1) (2) (1) (2)]T T T Tm m E E  p p

where
(1) miss

T Tp E

This quantity is called the transverse mass.



Transverse mass 
2 2 2

2 2
1 2

[ (1) (2)] [ (1) (2)]

2[ (1) (2) (1) (2)]
T T T T T

T T T T

M E E

m m E E

   

    

p p

p p

where

1 2 [ ( ) ( ) ( ) ( )]T T T Tm m p p

(1) miss
T Tp E

The distribution of event MT values possesses an end-point at 

max .TM M

If m1 = m2 = 0
2 2 | (1) || (2) | (1 cos )M  p p

where ij is defined as the angle between particles i and j in the transverse plane.

122 | (1) || (2) | (1 cos )T T TM  p p

where ij is defined as the angle between particles i and j in the transverse plane.



Example: Transverse mass of the W boson

PT (e+) 

ET
miss

mT  2PT (e)ET
miss(1 cos)mT 2PT (e)ET (1 cos)

(see previous slide) 



Additi l lid  Additional slides 



3-Body Decay

If the decaying particle is a scalar or we average over ist spin states,
then integration over the angles givesthen integration over the angles gives

21 1 | |d dE dE  M 1 23

2 2 2
12 233 3

| |
(2 ) 8

1 1 | |

d dE dE
M

dm dm


 



M

M 12 233 3 | |
(2 ) 32

dm dm
M

M

This is the standard form for the Dalitz plot



Dalitz-Plot

For a given value of m2
12; the range of m2

23 is determined by its

values when p is parallel or antiparallel to p :values when p2 is parallel or antiparallel to p3:

 2
2 2 2 2 2 2
23 2 3 2 2 3 3( ) max ( ) ,m E E E m E m         

 
23 2 3 2 2 3 3

2
2 2 2 2 2 2
23 2 3 2 2 3 3

( ) ( ) ,

( ) min ( ) .m E E E m E m        

Here E*
2 = (m2

12 – m2
1 + m2

2)/2m12 and E*
3 = (M2 – m2

12 – m2
3)/2m12

are the energies of particles 2 and 3 in the m rest frameare the energies of particles 2 and 3 in the m12 rest frame.



Dalitz Plot

If is constant, the
allowed region of the plot

2| |M
g

will be uniformely populated
with events

Dalitz plot for a three-body final state. In this example, the state is +K0p at
3 GeV. Four-momentum conservation restricts events to the shaded region.



Dalitz Plot

A clear signal of f0(980)A clear signal of f0(980)



(i) Rapidity y

Choose some direction (usually the beam direction) for the z-axis;
then the energy and momentum of a particle can be written as

cosh , , , sinhT x y z TE m y p p p m y 

where m conventionally called the transverse mass‘ is given bywhere mT, conventionally called the ‚transverse mass , is given by

2 2 2 2
Tm m p p  T x ym m p p 

Note:
This is a different definition than the transverse mass used at Hadron Colliders



The invariant mass M of the two-particle system can be written in termsThe invariant mass M of the two particle system can be written in terms
of these variables as

2 2 2
1 2 2[ (1) (2)cosh (1) (2)]T T T TM m m E E y     p p

where 2 2( ) | ( ) |T T iE i i m p

and pT(i) denotes the transverse momentum vector of particle i.



(v) Feynman x

Feynman‘s variable is given by

max max

( | |)
( )

z z
T z

z z

p E px p
p E p


 


p

max max( )z zp p

In the c.m. frame

2 2 sinhzcm T cm
p m yx

s s
 

max( ) ln( / ).cmy s m 


