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1.1 Why Hadron Collider?

Key questions investigated in particle physics:
(i) Structure of matter; fundamental constituents A =hlp
(i) Search for new particles, new types of matter E = m'c?

For the investigation of both questions, high energies and thereby
particle accelerators are needed
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High Energy Particle Accelerators (last 20 years):

Accelerator |type, laboratory energy years of
\s operation

LEP-I e*e" collider, CERN 91 GeV 1989 - 1994
LEP-II e*e- collider, CERN 209 GeV 1995 - 2000
HERA-I ep collider, DESY 27 + 800 GeV 1992 - 2000
HERA-II ep collider, DESY 27 + 920 GeV 2002 - 2007
TeVatron Run |  ppbar collider, Fermilab 1.8 TeV 1987 - 1996
TeVatron Run Il  ppbar collider, Fermilab 1.96 TeV 2002 - 2011
LHC, phase | pp collider, CERN 7TeV  2010- 2012
LHC, phase Il pp collider, CERN 14 TeV  2014- .......
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Important parameters of accelerators:

« Beam energy, centre-of-mass energy Vs

 Type of particles (ee, ep, or pp) and form of accelerator
(circular or linear accelerator)

« Luminosity L, or integrated Luminosity
(measured in units of cm= s1)
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Where do we stand today?

e*e” colliders LEP at CERN and SLC at SLAC + the Tevatron pp collider

+ HERA at DESY + many other experiments (fixed target....... )
have explored the energy range up to ~100 GeV with incredible precision

 The Standard Model is consistent
with all experimental data !

* No Physics Beyond the SM observed

(except clear evidence for neutrino masses)

* No Higgs seen (yet)
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Consistency with the Standard Model

Sensitivity to the Higgs boson and other new particles via quantum corrections:
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Why a hadron collider ?

e*e colliders are excellent machines for precision physics !!
- e+ e are point-like particles, no substructure — clean events
- complete annihilation, centre-of-mass system, kinematic fixed

K. Jakobs Vorlesung Physik an Hadron-Collidern, Freiburg, SS 2011



Proton proton collisions are more complex
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Simulation of a pp collision at the LHC:
Vs =14TeV, L =10%cm=2s"

Reconstruction of particles with high transverse momentum reduces the
number of particles drastically
(interesting object largely kept, background from soft inelastic pp collisions rejected)
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Main drawbacks of e*e- circular accelerators:

1.

Energy loss due to synchrotron radiation
(basic electrodynamics: accelerated charges radiate,
X-ray production via bremsstrahlung, synchrotron radiation...... )

- Radiated power (synchrotron radiation): o E\*

Ring with radius R and energy E 3 R (ch)

2 4

- Energy loss per turn: —AFE ~ sl ( £ )

(2 GeV at LEP-II) 3R me?

4

- Ratio of the energy loss between protons and AE(e) = (%) ~ 10

electrons: AE(p) e

Future accelerators:

* pp ring accelerators (LHC, using existing LEP tunnel)

e or ete linear accelerators, International Linear Collider ILC or CLIC
(under study / planning)



Limiting factors:

et e- accelerators:

- Energy loss is circular rings

- Acceleration gradient in linear accelerators
(ILC design, 40 MV / m)

- Fixed centre-of-mass energy....

pp accelerators:

- More complex interactions due to proton substructure

- Only part of the pp centre-of-mass energy available in the hard scattering
process (see later)
however: higher mass values can be reached with longer running times

- Magnetic field in bending magnets (8.3 T in LHC magnets)
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Accelerators at the energy frontier
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Today's open questions
in particle physics




Key Questions of Particle Physics

1. Mass: Whatis the origin of mass?
- How is the electroweak symmetry broken ?
- Does the Higgs boson exist ?

2. Unification: What is the underlying fundamental theory ?

Can the interactions be unified at larger energy?

How can gravity be incorporated ?
Is our world supersymmetric ?

3. Flavour: or the generation problem
- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?

Answers to some of these questions are expected on the
TeV mass scale > LHC
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The role of the present Hadron Colliders

1. Explore the TeV mass scale

- What is the origin of the electroweak
symmetry breaking ?

- The search for “low energy” supersymmetry

Can a link between SUSY and dark matter be
established?

- Other scenarios beyond the Standard Model

Look for the “expected”, but we need to be
open for surprises

2. Precise tests of the Standard Model

- There is much sensitivity to physics beyond the
Standard Model in the precision area

- Many Standard Model measurements can be
used to test and to tune the detector performance

The link between SUSY and Dark Matter ?
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O (proton - proton)
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1.2 Principles of particle accelerators

Tellchendetektor

spezielle
Strahlfokussierung

spezielle
Strahlfokussierung
Kollisionspunkt

Ablenkmagnet
Fokussierungsmagnet

Elektronenmnjektionspunkt Positronenmjektionspunkt

Beschleunigungsstrecke



Circular accelerator principles

e Cyclotron: constant RF
magnetic field radius p increases with energy
used for smaller machines

- Synchrotron: p = const

B increases with energy
RF frequency adjusted slightly ( = 0.999 ..... 1.0)

Most High Energy accelerators and all CERN ring accelerators
(PS, SPS, LEP, LHC) are of this type

injection . 4 mEgeeE
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Basic parameters, Lorentz Force

F=q(E+vxB)

charge g, normally q=e ; q=7Ze forions

e Electric field E provides the
acceleration or rather energy gain

e The magnetic field B keeps the
particles on their path

p is the radius of curvature for motion perpendicular

to the static magnetic field. Often called

e gyromagnetic or Larmor radius in astroparticle
physics

¢ bending radius for accelerators

Bp known as magnetic rigidity, units Tm

LHC

* Momentum p = 7 TeV/c
e LHC bending radius p = 2804 m

* Bending field B = 8.33 Tesla
e magnets at 1.9 K, super-fluid He

zZ
Circular S
motion for B
E=0
vlB
X

for q = e numerically

g P BITI=p[GeVic] 3336m/p
qgp high energy,v=c “p=E”

E < Ey =q B p Hillas criterion

v

Astroparticle

units 10-4T = 1Gauss ; a.u. = 1.5%x10!!m

Solar system B =10pG E=5TeV p=11a.u.

Intergalactic B=1nG  E =5 PeV (knee)
p=1.7x10m (4 % of galaxy-radius)



Event rate for process with cross section o

Luminosity and collision rates

Interaction
n=Lo region
Bunchl — " Bunch 2
Luminosity from bunch < % )
crossings at frequency f=1£ ., n, N - Effective area A N2
N1 N
L= szf for Gaussian bunches with rms sizes 0,0, A=4mn0,0,

High luminosity: Large number of particles (N,, N,)

Small beam dimensions (A) in the interaction point
Large f (large number of bunches,
- small time difference between bunch crossings)

LHC:

N =1.1510%", n,=2808 (number of bunches)
bunch separation: 25 ns  (corresponds to 7.5 m)
A:. beams squeezed (using strong, large aperture quadrupoles close to
the interaction region) from o = 0.2 mm to 16 um




- N1 Ng e N for N = N, = N, particles per bunch with

T b— 1 — 4—2 transverse r.m.s. beam size ¢ = o, = 0,
T 050y no and frequency f

Accelerator physicist express this often using the transverse emittance ¢ and the
B function:

Ni Ns 1
4\/6:1:,8;61118; where € — T0 /,6

=

Interaction RGeS
Poirt

Relative beam sizes around IP1 (Atlas) in collision



Quadrupole lens
focusing in x,
defocusing in y
or vice versa

F=e(vxB)

here

F=¢(0,0,v)x (B, B,,0)
=e(-vBy, +vB:, 0)

Combine F D
Defocusing when at
small amplitude
Overall focusing

Normal (light) optics :
Focal length of two lenses
at distance D

l/f = 1A, + 1/f, - DIfif>

is overall focusing

with 1/f = D/f?
forf=fi=-f2

Alternate gradient focusing

A
Y
Magnetic Field B:=ky
- Vector B)r = k X
BZ =0
VxB=0
Quad gradients in the LHC
K =1/Bp 9B, /ox =200 T/m

alternate gradient l' <", — [ ) _
focusing vy U 4
F D
together with
bending magnets
FODO lattice

N. C. Christofilos, unpublished manuscript in 1950 and patent
Courant, Snyder in 1952, Phys. Rev. 88, pp 1190 - 1196 + longer review in Annals of Physics 3 (1958)



Betatron motion

Equation of motion of particles in a ring (with bending fields) and quadrupoles ( field gradients xdB/ar )
In both transverse planes, here written with x for x, y : x'=dx(s)/ds ; x"=dx(s)/ds?

x”(s) + k(s) x(s) = 0 = known as Hill’s equation, derived in 1801 to describe planetary motion

Generalised oscillator equation with position dependent, periodic restoring force K(L+s5) = k() given by the quadrupole
gradients (+ the small weakly focusing bending term in the ring plane) i

Solution: x(s) = /€ 3(s) cos(pu(s) + @) e
. d . Trajectory,
S } 1 - 1 L -
Phase advance p(s) = / - ! 4 o
o B(s)
Tune # of betatron oscillations Q — K / 2T motion XV plotted with phase advance

normalised coordinates - becomes simple cos

PB(s) beta function, describes the focusing properties of the magnetic lattice
€ invariant, together with 3(s) amplitude. ~ “single particle emittance”

Motion conveniently described in phase space (x, x") with local slopes or angles x' = p./p
and linear optics elements as matrices ; with simple case for M, applies for IP to IP

x(s) M x(s0) M — cos2rQ  Bsin2mQ

X'(s) ) X' (s0) - —%sin27rQ cos2mQ



Transverse beam size and emittance

beam of many particles on stable orbit and
dispersion and slope ' = 0 by default at IP - relevant for experiments

consider
simple case

beam size, r.m.s. o(s) = VeB(s)
beam divergence, r.m.s. O(s) = e / B(s)
product e = o(s)0(s)

P - function : local machine quantity - focusing of lattice
Emittance ¢ : beam quantity - the average action
related to phase space density or kind of beam temperature
given by initial conditions (injected beam)
or equilibrium of quantum excitation and damping - 2nd lecture
in ideal machine : x, y, z motion uncoupled, 3 emittances € , €€,

IP: squeeze  to a minimum, called f* = maximum of divergence, needs aperture
Quadrupole Quadrupole

LHC exn=¢€Py=3.75 um, attop E, =7 TeV: € =0.503 nm, p* =0.55m, o* =16.63 pm, 6*=30 prad



The CERN accelerator complex: injectors and transfer

SPS

i e Beam 2
,_— 5 \
Beam 1 - LHC 6 S
g Extraction 7:
3 |
450 eV~ UIIBL

1

protons
machine | circum L [m] relative
LINACS
PS 628318
lons
SPS 6911.56 11 xPS
LHC 26658.883 27/7 x SPS

LEIR
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1.3 The Lar'ge Hadron Collider (LHC)




Begin of a new erain particle physics




The Large Hadron Collider

Beam energy 3.5TeV (nominal)

SC Dipoles 1232, 15 m, 8.33T
Stored Energy 362 MJ/Beam

Bunch spacing 25 ns
Particles/Bunch 1.15-10%

Design luminosity 1033 - 1034 cm—2s?

. became a reality in 2008

Int. luminosity 10- 100 fb1/year
after ~15 years of hard work




Important components of the accelerator

e Superconducting dipole magnets
(the largest challenge)

- Magnetic field of 8.33 Tesla
- in total 1232, 15 m long
- Operation temperature of 1.9 K

* Eight acceleration structures,
Field gradient of 5 MV/m




