Physics at Hadron Collider

1. Introduction, Particle Accelerators

- 1.1 Why hadron collider?
- 1.2 Principles on particle accelerators
- 1.3 The Large Hadron Collider (LHC) at CERN
- 1.4 The Tevatron Collider at Fermilab

1.1 Why Hadron Collider?

Key questions investigated in particle physics:

(i) Structure of matter; fundamental constituents

 $\lambda = h/p$

(ii) Search for new particles, new types of matter

$$E = m c^2$$

For the investigation of both questions, high energies and thereby particle accelerators are needed

High Energy Particle Accelerators (last 20 years):

Accelerator	type, laboratory	energy √s	years of operation
LEP-I	e ⁺ e ⁻ collider, CERN	91 GeV	1989 - 1994
LEP-II	e+e- collider, CERN	209 GeV	1995 - 2000
HERA-I	ep collider, DESY	27 + 800 GeV	1992 - 2000
HERA-II	ep collider, DESY	27 + 920 GeV	2002 - 2007
TeVatron Run I	ppbar collider, Fermilab	1.8 TeV	1987 - 1996
TeVatron Run II	ppbar collider, Fermilab	1.96 TeV	2002 - 2011
LHC, phase I	pp collider, CERN	7 TeV	2010- 2012
LHC, phase II	pp collider, CERN	14 TeV	2014

Important parameters of accelerators:

- Beam energy, centre-of-mass energy √s
- Type of particles (ee, ep, or pp) and form of accelerator (circular or linear accelerator)
- Luminosity L, or integrated Luminosity (measured in units of cm⁻² s⁻¹)

Where do we stand today?

e⁺e⁻ colliders LEP at CERN and SLC at SLAC + the Tevatron pp collider + HERA at DESY + many other experiments (fixed target......) have explored the energy range up to ~100 GeV with incredible precision

- The Standard Model is consistent with all experimental data!
- No Physics Beyond the SM observed (except clear evidence for neutrino masses)
- No Higgs seen (yet)

Direct searches: (95% CL limits) $m_H > 114.4 \text{ GeV/c}^2$ $m_H < 163 \text{ GeV/c}^2$ or $m_H > 166 \text{ GeV/c}^2$

Only unambiguous example of observed Higgs

(P. Higgs, Univ. Edinburgh)

Summer 2009

Consistency with the Standard Model

Sensitivity to the Higgs boson and other new particles via quantum corrections:

Interpretation within the Standard Model (incl. new (2009) m_W and m_t measurements)

$$m_H = 87 (+35) (-26) GeV/c^2$$

 $m_H < 157 GeV/c^2 (95 % CL)$

Why a hadron collider?

e⁺e⁻ colliders are excellent machines for precision physics!!

- e+ e⁻ are point-like particles, no substructure → clean events
- complete annihilation, centre-of-mass system, kinematic fixed

Proton proton collisions are more complex

Simulation of a pp collision at the LHC: $\sqrt{s} = 14 \text{ TeV}, \quad L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Reconstruction of particles with high transverse momentum reduces the number of particles drastically (interesting object largely kept, background from soft inelastic pp collisions rejected)

Main drawbacks of e⁺e⁻ circular accelerators:

- Energy loss due to synchrotron radiation
 (basic electrodynamics: accelerated charges radiate, x-ray production via bremsstrahlung, synchrotron radiation.....)
 - Radiated power (synchrotron radiation):
 Ring with radius R and energy E
 - Energy loss per turn: (2 GeV at LEP-II)
 - Ratio of the energy loss between protons and electrons:

$$P = \frac{2 e^2 c}{3 R^2} \left(\frac{E}{mc^2}\right)^4$$

$$-\Delta E \approx \frac{4 \pi e^2}{3 R} \left(\frac{E}{mc^2}\right)^4$$

$$\frac{\Delta E(e)}{\Delta E(p)} = \left(\frac{m_p}{m_e}\right)^4 \sim 10^{13}$$

Future accelerators:

- pp ring accelerators (LHC, using existing LEP tunnel)
- or e⁺e⁻ linear accelerators, International Linear Collider ILC or CLIC (under study / planning)

Limiting factors:

e+ e- accelerators:

- Energy loss is circular rings
- Acceleration gradient in linear accelerators (ILC design, 40 MV / m)
- Fixed centre-of-mass energy....

pp accelerators:

- More complex interactions due to proton substructure
- Only part of the pp centre-of-mass energy available in the hard scattering process (see later)
 - however: higher mass values can be reached with longer running times
- Magnetic field in bending magnets (8.3 T in LHC magnets)

Accelerators at the energy frontier

Livingston plot

Exponential growth of √s with time (at least in the past)

Factor 4 every 10 years

pp: discovery machines (W/Z, top,)

e⁺e⁻: precision (LEP, QCD and el.weak)

Both required!

Today's open questions in particle physics

Key Questions of Particle Physics

1. Mass: What is the origin of mass?

- How is the electroweak symmetry broken?
- Does the Higgs boson exist?

2. Unification: What is the underlying fundamental theory?

- Can the interactions be unified at larger energy?
- How can gravity be incorporated?
- Is our world supersymmetric?

-

3. Flavour: or the generation problem

- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?

Answers to some of these questions are expected on the TeV mass scale → LHC

The role of the present Hadron Colliders

1. Explore the TeV mass scale

- What is the origin of the electroweak symmetry breaking?
- The search for "low energy" supersymmetry Can a link between SUSY and dark matter be established?
- Other scenarios beyond the Standard Model

-

Look for the "expected", but we need to be open for surprises

2. Precise tests of the Standard Model

- There is much sensitivity to physics beyond the Standard Model in the precision area
- Many Standard Model measurements can be used to test and to tune the detector performance

The link between SUSY and Dark Matter?

M. Battaglia, I. Hinchliffe, D. Tovey, hep-ph/0406147

Erwartete Produktionsraten am LHC

 Inelastische Proton-Proton Reaktion Quark -Quark/Gluon Streuungen migroßen transversalen Impulsen 	
b-Quark Paare Top-Quark Paare	5 Millionen / sec 8 / sec
 W → e v Z → e e 	150 / sec 15 / sec
Higgs (150 GeV)Gluino, Squarks (1 TeV)	0.2 / sec 0.03 / sec

Dominante harte Streuprozesse: Quark - Quark

Quark - Gluon Gluon - Gluon

1.2 Principles of particle accelerators

Circular accelerator principles

• Cyclotron: constant RF

magnetic field radius ρ increases with energy

used for smaller machines

• Synchrotron: $\rho = const$

B increases with energy

RF frequency adjusted slightly ($\beta = 0.999 \dots 1.0$)

Most High Energy accelerators and all CERN ring accelerators

(PS, SPS, LEP, LHC) are of this type

Basic parameters, Lorentz Force

$$\mathbf{F} = \mathbf{q} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

charge q, normally q = e; q = Z e for ions

- Electric field E provides the acceleration or rather energy gain
- The magnetic field B keeps the particles on their path
- $\boldsymbol{\rho}\$ is the radius of curvature for motion perpendicular to the static magnetic field. Often called
- gyromagnetic or Larmor radius in astroparticle physics
- bending radius for accelerators
 Bρ known as magnetic rigidity, units Tm

LHC

- Momentum p = 7 TeV/c
- LHC bending radius $\rho = 2804 \text{ m}$
- Bending field B = 8.33 Tesla
- magnets at 1.9 K, super-fluid He

$$B = \frac{p}{q \ \rho} \quad \begin{array}{l} \text{for } q = e \text{ numerically} \\ B \ [T] = p \ [GeV/c] \quad 3.336 \ m \ / \ \rho \\ \text{high energy, } v = c \quad \text{``p} = E\text{''} \\ E < E_H = q \ B \ \rho \ \text{Hillas criterion} \end{array}$$

Astroparticle

units $10^{-4}\text{T} = 1\text{Gauss}$; a.u. = $1.5 \times 10^{11}\text{m}$ Solar system B = $10\mu\text{G}$ E = 5 TeV ρ = 11 a.u. Intergalactic B = 1nG E = 5 PeV (knee) $\rho = 1.7 \times 10^{19}\text{m}$ (4 % of galaxy-radius)

Luminosity and collision rates

Event rate for process with cross section σ

$$\dot{n} = \mathcal{L}\sigma$$

Luminosity from bunch

crossings at frequency $f = f_{rev} n_b$

$$\mathcal{L} = \frac{N_1 N_2 f}{A}$$

for Gaussian bunches with rms sizes $\sigma_x \sigma_y$ $A = 4 \pi \sigma_x \sigma_y$

High luminosity: Large number of particles (N₁, N₂)

Small beam dimensions (A) in the interaction point

Large f (large number of bunches,

→ small time difference between bunch crossings)

LHC: $N = 1.15 \ 10^{11}$, $n_b = 2808$ (number of bunches) bunch separation: 25 ns (corresponds to 7.5 m)

A: beams squeezed (using strong, large aperture quadrupoles close to the interaction region) from σ = 0.2 mm to 16 μm

$$L = f \frac{N_1 \ N_2}{4\pi \ \sigma_x \sigma_y} = f \frac{N}{4\pi \ \sigma^2}$$

for N = N₁ = N₂ particles per bunch with transverse r.m.s. beam size σ = σ_x = σ_y and frequency f

Accelerator physicist express this often using the transverse emittance ϵ and the β function:

$$L = f \frac{N_1 \ N_2}{4 \ \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$
 where $\epsilon = \pi \sigma^2/\beta$

Relative beam sizes around IP1 (Atlas) in collision

Alternate gradient focusing

Quadrupole lens focusing in x, defocusing in y or vice versa

$$\mathbf{F} = \mathbf{e} (\mathbf{v} \times \mathbf{B})$$
here
$$\mathbf{F} = \mathbf{e} (0, 0, \mathbf{v}) \times (B_x, B_y, 0)$$

$$= \mathbf{e} (-\mathbf{v} B_y, + \mathbf{v} B_x, 0)$$

Combine F D
Defocusing when at small amplitude
Overall focusing

Normal (light) optics : Focal length of two lenses at distance D $1/f = 1/f_1 + 1/f_2 - D/f_1f_2$ is overall focusing with $1/f = D/f^2$ for $f = f_1 = -f_2$

alternate gradient focusing

together with bending magnets FODO lattice

N. C. Christofilos, unpublished manuscript in 1950 and patent Courant, Snyder in 1952, Phys. Rev. 88, pp 1190 - 1196 + longer review in Annals of Physics 3 (1958)

Betatron motion

Equation of motion of particles in a ring (with bending fields) and quadrupoles (field gradients $\propto \partial B/\partial r$)

In both transverse planes, here written with x for x, y: x' = dx(s) / ds; $x'' = d^2x(s) / ds^2$

x''(s) + k(s) x(s) = 0 known as Hill's equation, derived in 1801 to describe planetary motion

Generalised oscillator equation with position dependent, periodic restoring force k(L+s) = k(s) given by the quadrupole

gradients (+ the small weakly focusing bending term in the ring plane)

Solution:
$$x(s) = \sqrt{\epsilon \beta(s)} \cos(\mu(s) + \phi)$$

Phase advance

$$\mu(\mathbf{s}) = \int_0^{\mathbf{s}} \frac{d\mathbf{s}}{\beta(\mathbf{s})}$$

Tune # of betatron oscillations

$$Q = \mu / 2\pi$$

motion $x/\sqrt{\beta}$ plotted with phase advance normalised coordinates - becomes simple cos

 $\beta(s)$ beta function, describes the focusing properties of the magnetic lattice

 ϵ invariant, together with $\beta(s)$ amplitude. "single particle emittance"

Motion conveniently described in phase space (x, x') with local slopes or angles $x' = p_x / p$ and linear optics elements as matrices; with simple case for M, applies for IP to IP

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \mathbf{M} \begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} \cos 2\pi Q & \beta \sin 2\pi Q \\ -\frac{1}{\beta} \sin 2\pi Q & \cos 2\pi Q \end{pmatrix}$$

Transverse beam size and emittance

consider : beam of many particles on stable orbit and

simple case: dispersion and slope $\beta' = 0$ by default at IP - relevant for experiments

beam size, r.m.s. $\sigma(s) = \sqrt{\varepsilon \beta(s)}$ beam divergence, r.m.s. $\theta(s) = \sqrt{\varepsilon/\beta(s)}$ product $\varepsilon = \sigma(s)\theta(s)$

 β - function : local machine quantity - focusing of lattice

Emittance ε : beam quantity - the average action

related to phase space density or kind of beam temperature

given by initial conditions (injected beam)

or equilibrium of quantum excitation and damping - 2nd lecture in ideal machine: x, y, z motion uncoupled, 3 emittances ε_x , ε_y , ε_z

IP: squeeze β to a minimum, called β^* \Rightarrow maximum of divergence, needs aperture

LHC $\varepsilon_N = \varepsilon \ \beta \gamma = 3.75 \ \mu m$, at top $E_b = 7 \ TeV$: $\varepsilon = 0.503 \ nm$, $\beta^* = 0.55 \ m$, $\sigma^* = 16.63 \ \mu m$, $\theta^* = 30 \ \mu rad$

The CERN accelerator complex: injectors and transfer

1.3 The Large Hadron Collider (LHC)

Important components of the accelerator

- Superconducting dipole magnets (the largest challenge)
 - Magnetic field of 8.33 Tesla
 - in total 1232, 15 m long
 - Operation temperature of 1.9 K

Eight acceleration structures,
 Field gradient of 5 MV/m

