Übungen zu Physik an Hadron-Collider SS 2011 Prof. Karl Jakobs, Dr. Iacopo Vivarelli Übungsblatt Nr. 4

Die Lösungen müssen bis 11 Uhr am Donnerstag den 2.6.2011 in die Briefkästen im Erdgeschoss des Gustav-Mie-Hauses eingeworfen werden!

1. Minimum bias interactions

Download the three ntuples name MinBias_900GeV(2TeV,7TeV).root from

http://wwwhep.physik.uni-freiburg.de/~ivivarel/col_phys/

They contain the final state particles of simulated (with Pythia 8) non diffractive proton proton collisions at three different center of mass energies. Each ntuple has a structure which should be obvious: for each events, 5 vectors are defined, containing the transverse momentum, the pseudorapidity, the ϕ angle, the charge and the PDG id of each particle produced in the event. The PDG id is a unique identifier for the particle identification (π^{\pm} , π^{0} , K^{\pm} and so on). To decode the PDG id, the following link can be useful:

http://pdg.lbl.gov/2002/montecarlorpp.pdf

Each ntuple contain 10^5 events. The cross sections (according to Pythia) are 35 (40, 50) mb for $\sqrt{s} = 900$ (2000, 7000) GeV

For each of the three center of mass energies:

- To what integrated luminosity correspond the 10⁵ events? [1 point]
- Investigate the particle spectrum. What is the average composition of particles with $p_T > 100 \text{ MeV?}$ [2 point]
- Where do all those photons come from mainly? Is the fraction of π^{\pm} with respect to π^{0} roughly in agreement with arguments from isospin symmetry? [2 point]
- Plot the following distribution of charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$ (be careful with the normalization):

$$\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta} = \frac{1}{N_{ev}} \frac{1}{2\pi p_T} \frac{d^2 N_{ch}}{dp_T d\eta} = \frac{1}{N_{ev}} \frac{dN_{ev}}{dn_{ch}}$$
(1)

where N_{ev} is the number of event, N_{ch} is the number of charged particles, n_{ch} is the number of charged particles per event. [2 points per distribution]

[Bonus questions:] Address also the following points:

- What is the average charged particle multiplicity (with $p_T > 100 \text{ MeV}$) at $\eta = 0$ in each center of mass energy point? Make a plot. [2 bonus points]
- Compare the results with those shown in

http://arxiv.org/pdf/1012.5104v2

shortly discussing possible sources of differences in the results. [2 bonus points]